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Abstract

District energy systems are an alternative to conventional national-scale networks to meet
demand in urban areas. Decentralising electricity production reduces distribution losses,
while centralising thermal energy production capitalises on economies of scale. Furthermore,
geographic proximity facilitates the use of waste heat from electricity production to meet
thermal demand. However, it is difficult to assess which configuration of technologies will
best suit a cluster of users. Mathematical optimisation techniques have been extensively
researched as a method to resolve this, as they can simplify the design of investment portfolios
and operation schedules for a given set of geolocated demands. However, they are not yet
practically applicable.

This thesis uses the open-source, mixed integer linear programming framework Calliope
to present three methodological enhancements which address model simplification, para-
meter uncertainty, and conflicting decision-maker objectives. These enhancements enable the
practical design of district energy systems through data-centric workflows which can readily
represent real system complexities in a tractable optimisation model.

This thesis first examines the impact of parameter simplification in a linear model. Piece-
wise linearisation is applied to nonlinear part-load energy consumption curves and a pre-
processing step is developed to optimise breakpoint positioning along a piecewise curve.
Second, a three-step method is proposed to handle demand uncertainty in linear models,
using historical demand data. These steps are scenario generation, scenario reduction, and
scenario optimisation. Using out-of-sample tests, robustness of optimal investments to unmet
demand is quantified. Furthermore, system resilience to unexpected events is explored by
introducing interruptions to the national electricity grid availability for a district in Bangalore,
India. Scenario optimisation is extended to account for these interruptions as well as to
mitigate unfavourably high levels of CO2 emissions in system design. Finally, this thesis
identifies eight possible decision makers, who each hold a different objective in the design of
a district energy system. Optimal technology configuration and out-of-sample test results are
compared across all decision-maker objectives.

These methodological enhancements demonstrate the capability of optimisation models
to be reflective of reality whilst being transparent concerning the impact of simplifications,
uncertainty, and conflicting objectives. Calliope is extended in this thesis to be practically
applicable for district energy systems. Moreover, its extensibility facilitates the continuation
of development, including possible future work into data validation and spatial dimension
simplification.
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Chapter 1

Introduction

There are growing calls to update how global energy demand is met (IPCC, 2014). Particularly,
this pertains to the reduction in dependence on fossil fuels in favour of zero, or near zero,
carbon emitting energy sources. Buildings are the largest consumers of energy, constituting
approximately 75% of natural gas consumption and approximately 70% of electricity con-
sumption in the UK (BEIS, 2018a). As such, methods to reduce demand, increase supply
efficiency, and change energy sources are a longstanding research area. Currently, building
energy provision is characterised by direct consumption of nationally generated electricity
and locally generated heat, with the latter produced from nationally distributed natural gas.
However, in response to the need for new energy systems, a paradigm shift may be necessary.

District energy systems offer a promising avenue for building energy provision. In such
systems, end-use energy demand is met by generation at close geographic proximity. This
allows electricity generation to become decentralised from the national grid and thermal
generation to be centralised relative to building-level generation. The small distance re-
quired to distribute energy in a district reduces electricity distribution losses, compared to
national-scale transmission (Pepermans et al., 2005). The potential advantages of this are more
pronounced in less economically developed nations, where overall energy losses caused by
poor national grid infrastructure can be three times greater than recorded in Europe (IEA
Statistics, 2014). Furthermore, the inadequacies of national grid infrastructure can cause
intermittency in electricity supply, which will have negative economic impacts (Dollar et al.,
2005).

In addition to the economic benefits of decentralised electricity generation, centralised
thermal energy generation can capitalise on economies of scale (Söderman, 2007) and other-
wise waste energy streams (Rezaie and Rosen, 2012). In meeting greenhouse gas emission
reductions in the European Union, district heating systems could offer an equally viable, if
not cheaper, alternative to other methods such as the electrification of decentralised heat
generation (Connolly et al., 2014). Central to this economic benefit are combined heat and
power plants (CHPs), which can produce electricity conventionally, using a gas turbine, for
instance, whilst their exhaust heat is captured and used to heat water. This water is then dis-
tributed, via a piped network, to buildings in a district, to provide space heating that would
otherwise only be available from building-level technologies. Many industrialised cities have
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CHP systems (United Nations Environment Programme, 2014). Indeed, districts within cities
benefit most from such systems, as return on investment increases with population density
(IEA, 2014).

Although the potential benefits of district energy systems are evident in the literature,
the prevalence of such systems has not markedly increased in recent years. In the UK, the
total capacity of CHP schemes even reduced between 2013 and 2017, from 5,924MWe to
5,835MWe (BEIS, 2018a). In contrast, research into modelling such systems has experienced a
six-fold increase between 2012 and 20181. Barriers to implementation are caused primarily
by system cost. For example, electricity generating district systems are more expensive
to install than their national scale counterparts and may limit the available primary fuel
choice to only the most expensive (Pepermans et al., 2005). The installation of thermal energy
distribution networks is also costly (Omu et al., 2013), exacerbated by the need to replace
existing infrastructure in heavily populated areas (Rezaie and Rosen, 2012).

District energy systems inherit complexities from both building-scale systems and national-
scale systems. They consider multiple, interconnected energy streams whilst also requiring
the distribution of energy to consumers with varying spatial and temporal characteristics.
Therefore, increasing the uptake of centralised district energy systems and realising their
potential benefits requires more sophisticated tools. Mathematical optimisation is one such
tool which is often associated with district energy system design (Keirstead et al., 2012) and
has been researched for use in district design for over three decades (Gustafsson et al., 1987).
Optimisation is the process of making the best of something; an optimal energy system is
one which minimises a given objective whilst meeting the physical constraints of the sys-
tem. Given the complex possible interactions of district energy systems, it can be difficult
to understand what combination of technologies would yield an optimal solution. Hence,
computational methods are required, reducing the burden on the designer to only describing
key constraints of the system.

Many studies exist with a focus on designing district energy systems using optimisation
techniques (Keirstead et al., 2012; Sameti and Haghighat, 2017). These studies often investigate
the minimisation of system monetary cost while meeting the demand of a number of buildings
by either centralised or decentralised technologies. Some studies also minimise greenhouse
gas emissions or energy use (Sameti and Haghighat, 2017). However, system scale, resolution,
location, available technologies, and recommendations vary between studies. This variation
is coupled with limited model and data transparency, making it difficult to ascertain the
validity of the modelling methods used and the benefit of implementing district systems
(DeCarolis et al., 2012). This may explain the limited use of mathematical optimisation in
industry, in favour of heuristic methods.

1The increase in research activity has been measured by comparing the number of publications available
when searching for ‘(urban OR city) energy model’ in topic or title using the ISI Web of Knowledge database in
November 2018 to the same search carried out in 2012 (Keirstead et al., 2012).
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1.1 Thesis overview

1.1.1 Hypothesis, aims, and tasks

The central hypothesis of this thesis is that current district energy models fall short of being
practically applicable, owing primarily to the following reasons:

1 Models are not structured in a transparent manner and they cannot be validated.

2 Models do not fully recognise the simplifications made in preparing a linear representation of real
systems.

3 Models do not understand the impact of deterministic decision-making on the feasibility of invest-
ment decisions.

As such, the aims of this thesis are to:

1. Develop a transparent, extensible model;

2. Test the influence of simplifying technology part-load characteristics on the optimum;

3. Investigate techniques for improving district energy model robustness to demand
uncertainty and power interruptions; and

4. Compare the impact of different objectives on model feasibility when exposed to
uncertainty.

To fulfil these aims, the following tasks were developed:

1. Design and deploy an open-source piece of software, which a decision maker can use
to prepare, optimise, and analyse a district energy system model;

2. Create piecewise linearised representations of technology part-load consumption curves,
for direct comparison to a nonlinear model and a linear model using rated efficiency;

3. Formulate a method to handle demand uncertainty in district energy systems; and

4. Design out-of-sample tests to consistently measure the robustness of investment de-
cisions to unexpected future scenarios.

1.1.2 Thesis structure

This thesis begins in Chapter 2 by reviewing the current state-of-the-art in district energy
modelling. A district energy model is broken down to its component parts, with each part
being discussed in turn. The way in which studies from recent years have represented each
component is compared, to better understand the breadth of the field of linear district energy
system optimisation models. Shortcomings of existing studies are discussed in three parts:
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model simplifications, model determinacy, and model transparency. These shortcomings
inform the hypothesis on which this thesis is based. The studies pushing frontiers to overcome
these shortcomings are discussed alongside those which are examples of the current paradigm.
Finally, the focus of this thesis is discussed, directly linking the thesis hypothesis, aims, and
tasks.

Mixed integer linear programming (MILP) and the required mathematical formulation
to construct an energy system optimisation model is presented in Chapter 3. In doing
so, the open-source modelling framework Calliope is detailed. Calliope has been extended
in this thesis to provide the functionality required to meet the thesis aims and to expand
its capabilities as a practical tool for decision making. This includes the automation of
aggregation tasks, improved clarity in defining an energy system, shareable data packaging,
and interactive data visualisation.

Chapter 4 details an exploratory analysis of piecewise linearisation. Namely, the piecewise
linearisation technique is applied to nonlinear technology part-load consumption curves. Two
parallel models are developed by which piecewise linearisation can be compared to the fully
nonlinear representation of the curves. To improve on piecewise linear model tractability, the
linear model is expanded to capitalise on the strictly convex upward or downward nature
of the curves under study and to implement a pre-processing step which can be used to
automatically generate piecewise curves using the fewest possible breakpoints along the
curves.

A three-step method by which uncertainty can be accounted for in district energy system
models is detailed in Chapter 5. The method encompasses data-driven, multi-dimensional
scenario generation; scenario reduction using independently optimal objective function
values; and tractable scenario optimisation (SO). Historical energy demand data from an
office space in Bangalore, India, and commercial/academic spaces in Cambridge, UK are used
to inform scenario generation. Optimal technology capacity is sought using varying levels
of demand uncertainty awareness. These technology portfolios are then directly compared
using out-of-sample (OOS) tests, which aim to quantify robustness. Portfolios which can
ensure demand is met, even when exposed to new demand data, are considered robust.
Furthermore, the historical prevalence of unexpected interruptions to national grid power in
Bangalore is quantified. The almost daily occurrence of these interruptions is used to extend
both SO and OOS tests to quantify and improve system resilience.

The impact of objective function choice is examined in Chapter 6, using the case studies
introduced in Chapter 5. Technology investment is compared when varying the relative
importance of investment and operation costs, carbon emissions and monetary costs, and
dependence on a district thermal network. The inadvertent impact of these investment
portfolios is quantified by exposing them to new demand scenarios.

Finally, the methods of chapters 5 and 6 are combined by the consideration of carbon
emissions as a risk factor in SO. The aim of this combination is to converge on technology
investment portfolios which are cost effective whilst robust to demand uncertainty and
the realisation of excessive carbon emissions. Chapter 7 concludes by drawing out the
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contributions of this thesis to the field of linear district energy optimisation, with particular
emphasis on achieving the thesis aims.

1.1.3 Case studies

Four case studies are used in this thesis, each with different properties and uses. Table 1.1
provides an overview of each case study, including their key properties and the chapter(s) in
which they are used. Greater detail on each case study can be found in the relevant chapters,
as well as in Appendix B.

Case study 1 is represents a hotel in Japan, optimised over 24 hours to determine only
technology operation, not investment. It has hot water, cooling, and electricity demand.

Case study 2 is an illustrative district in the UK, optimised over four typical days to
determine both investment and technology operation. It takes many of the technology
characteristics from case study 1, but with costs and geographic parameters updated for the
new context. It represents domestic and commercial properties, with demand for electricity,
heat, and cooling. A power plant is also proposed on the network, which can distribute heat,
gas, and electricity to the demand nodes.

Case study 3 is an illustrative district in Bangalore, India, based on a commercial area
of the city, optimised over 12 typical days to determine both investment and technology
operation. It represents a district cooling network amongst office buildings only, with the
possibility of an energy centre to produce cold water at a large scale. New technology
characteristics, including costs, are used in this case study.

Case study 4 is based on the masterplan of a proposed district in Cambridge, UK, op-
timised over six typical days to determine both investment and technology operation. It
comprises laboratories and offices with heat and electricity demand and is the largest district
network. The viability of a proposed energy centre and district heating network is analysed
in this case study. Technology characteristics draw from those in case study 2.

Table 1.1 Overview of thesis case studies. Abbreviations are given on pages xv and xvi.

Spatial size Temporal size Location Number of
technologies

Thesis
chapter

C
as

e
st

ud
y 1 1 building 1 day Japan 9 supply

2 storage
0 distribution

4

2 10 buildings,
aggregated to 2
demand nodes

1 year,
aggregated to 4
typical days

UK 10 supply
3 storage
3 distribution

4

3 17 buildings,
aggregated to 11
demand nodes

1 year,
aggregated to 12
typical days

Bangalore,
India

6 supply
2 storage
2 distribution

5, 6

4 46 buildings,
aggregated to 39
demand nodes

1 year,
aggregated to 6
typical days

Cambridge,
UK

5 supply
2 storage
3 distribution

5, 6





Chapter 2

Literature Review

This chapter reviews recent and state-of-the-art in district energy optimisation models. In
section 2.1, a detailed analysis is undertaken of the following model components required
to define a district: 1) system resolution, 2) representation of supply technologies, and 3)
multi-energy demand. The review focusses on the need for a model to represent a real system,
as well as the steps taken within the existing literature to address the difficulty of doing so.
In Section 2.2, model simplification, determinacy and lack of transparency are discussed as
key shortcomings of the current paradigm in district energy system optimisation. Finally, in
Section 2.3 the focus of this thesis is placed within the context of the current paradigm and its
shortcomings.

Collating studies on district energy systems requires broadening the terminology used to
define such systems. A district energy system is defined in this thesis as one in which useful
energy is generated in close geographical proximity to demand nodes, allowing synergies
between multiple energy carriers to be exploited. These energy carriers are predominantly
electrical and thermal (high and low temperature). District systems are ultimately connected
to national energy networks and can thus be considered subsystems within a complete
national energy system. For this reason, recent reviews of the existing literature have defined
systems within their scope as ‘distributed’ (Alarcon-Rodriguez et al., 2010; Chicco and
Mancarella, 2009), ‘decentralised’ (Hiremath et al., 2007), or ‘microgrid’ (Gu et al., 2014).
However, the terms ‘distributed’ and ‘decentralised’ can cause confusion. An energy centre
within a district system is a centralised system when compared to building-level energy
provision, but is decentralised compared to the national grid infrastructure. Although the
term ‘microgrid’ is perhaps less confusing in placing district energy systems within their
spatial context, this definition may also suggest that they are purely electrical systems (Marnay
et al., 2015). Instead, some reviews have used the terms ‘community’ and ‘urban’ to define
energy systems, bounding the models geographically. A community is considered to be a
system smaller than 10km2 (Huang et al., 2015) while urban energy systems include both
‘district’ and entire city systems (Keirstead et al., 2012; Reinhart and Cerezo Davila, 2016).
Although a district system could reasonably be the size of a small city, the loose terminology
of ‘urban’ excessively broadens the available literature. Mancarella (2014) ignores geographic
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bounding entirely by using the definition ‘multi-energy systems’. But, in doing so, their
review encompass both building-level studies and regional models which connect districts.

Recent reviews of optimisation models have preferred to use the definition of district
energy systems (Allegrini et al., 2015; Olsthoorn et al., 2016; Sameti and Haghighat, 2017). Of
these, Sameti and Haghighat (2017) offer the most comprehensive review of existing district
energy system optimisation models, including both linear and nonlinear systems within their
study.

The scope of this review is limited to studies which optimise district multi-energy systems
using linear programming algorithms. Within this scope, a core set of 60 models has been
identified, of which 46 have been published in the last four years and can be considered
state-of-the-art in the field. Table A.3 in Appendix A provides the reader with a summary for
each model, which collates the components chosen based on their relevance to this review.

2.1 Representing district energy systems

2.1.1 System size

Translating a physical system to a digital representation requires discretely defining much
of what is continuous in reality. However, discretisation leads to loss of fidelity. This phe-
nomenon can be likened to digital displays where highly pixelated (low resolution) images
are seen to be a poor reflection of reality. Increasing resolution improves the image, but at
the cost of increased power consumption to compute each pixel’s colour and to power more
light emitting diodes. Worse still, a larger display leads to a polynomial increase in power
consumption, as the number of pixels must increase in both dimensions to maintain the
requisite resolution. Much like digital displays, there is a desire for high resolution, large
district energy system models. Although system resolution has improved, the computational
expense is ever present. There are two dimensions by which district systems can be discret-
ised: in space and in time. In the literature, there is no agreed resolution or size, with most
studies choosing to compromise on one of the dimensions.

The spatial dimension

Districts are composed of distinct buildings, to which energy is distributed. Studies
which model buildings individually are necessarily small. Omu et al. (2013) and Casisi
et al. (2009) only considered six buildings in a district smaller than 0.02km2. Indeed, fewer
than 20 buildings is common when they are modelled independently (Casisi et al., 2009; Li
et al., 2016a; Maréchal et al., 2008; Mehleri et al., 2012; Morvaj et al., 2016; Voll et al., 2013).
There are models that exceed this, with Söderman (2007) most notably incorporating up
to 53 buildings in a district. However, most of these larger districts are optimised only for
energy system operation (Bucciarelli et al., 2018; Cesena and Mancarella, 2018; Good and
Mancarella, 2017; Orehounig et al., 2015; Reddy, 2017). In such models, no decisions need
to be made about the technology portfolio in which to invest. As a compromise, Orehounig
et al. (2015) considered a range of scenarios consisting of different technology portfolios and
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independently optimised the operation schedule for a 29 building district for each scenario.
Where optimisation includes technology capacity selection, only Voll et al. (2015) maintain a
full hourly resolution over a year (8760 timesteps) when modelling 39 consumers in a district.
Other models reduce the time resolution to 20 or fewer timesteps (Haikarainen et al., 2014;
Khir and Haouari, 2015; Söderman, 2007; Tanaka et al., 2017; Weber and Shah, 2011).

To increase the number of buildings in the district while including technology capacity
optimisation, it is most common to reduce the spatial resolution of a model. In the first
instance, buildings are aggregated into nodes which incorporate a small number of adjacent
buildings. For instance, when modelling an industrial site, Buoro et al. (2013) modelled nine
energy ‘users’ to integrate at least 20 buildings into a 5km district network. Beyond this
level of aggregation, it is likely that the district network would be drastically simplified.
Aggregating 75 buildings into five nodes (Omu et al., 2015) or 137 buildings into seven nodes
(Ameri and Besharati, 2016) does not allow a model to accurately capture any variability
of demand across individual buildings. Jennings et al. (2014) simplified even further by
aggregating a London borough of 92,170 buildings into 19 interconnected nodes while
other studies have modelled entire cities with 12 (Söderman and Pettersson, 2006) or 26
(Haikarainen et al., 2014) ‘consumers’.

At its most extreme, aggregation of buildings into nodes leads to a lack of any network
consideration in a model. Energy balance is still maintained, but with the assumption that
there is no distance between energy generation and consumption. Garcia and Weisser (2006)
modelled the entirety of Grenada as a single demand node when optimising the operation of
a wind-diesel-storage electrical system. Heat networks are also aggregated to single nodes,
both in modelling city-scale systems (Christidis et al., 2012; Farzaneh et al., 2016; Fazlollahi
et al., 2014) and areas of cities at the borough level (Gabrielli et al., 2018; Ren et al., 2010). Even
when the size of the district would be sufficiently small to include a network, consisting
of only four or five buildings, some studies choose to model only a single node (Koltsaklis
et al., 2014; Kotzur et al., 2018a; Kotzur et al., 2018b; Wouters et al., 2014). At this spatial
resolution, a district energy model is indistinguishable from any other spatial scale. There
are some national-level and building-level energy systems which are almost interchangeable,
particularly as the latter also models multi-energy demand.

For centralised energy to be provided within a district, an energy centre must be sited
and energy distribution must be physically placed into the system. Consumers or producers
are point nodes in some studies (Haikarainen et al., 2014; Li et al., 2016a; Morvaj et al., 2016;
Söderman, 2007; Voll et al., 2013), but a lack of understanding around the physical footprint
of nodes can ignore potential limitations. For instance, reducing the footprint of a necessarily
large district-scale storage tank would require a taller tank, increasing the height to diameter
(H/D) ratio. While a larger H/D ratio does improve utilisation of tank volume, it increases
tank heat loss (Nielsen, 2005). Where existing infrastructure is modelled, space must be found
within the boundary of the district. Omu et al. (2015) pinpointed existing building-level
combined cooling, heat and power plants (CCHPs) on a site, and designated an area of
sparse existing development for a proposed district combined heat and power plant (CHP).
Similarly, Buoro et al. (2014) used undeveloped space of an industrial district to site a CHP.
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New developments have greater freedom to fit a district system optimally around demand
nodes. For instance, Keirstead et al. (2010) considered a proposed eco-town using their model
SynCity. By including building occupant capacity and location endogenously in the model,
they were able to find the best configuration of buildings, making best use of district thermal
energy. This same eco-town has also been used in other studies, but with fixed physical
infrastructure reduced to point nodes (Jennings et al., 2014; Voll et al., 2015; Weber and Shah,
2011).

Not only do energy technologies need physical space in which to be sited, but distribution
networks must be routed. In single node models, such as the 500,000 buildings modelled by
Fazlollahi et al. (2014), routing thermal energy to all consumers is assumed possible. In studies
which model the district network, it is common to use the road-following approach, in which
the distribution network is assumed to follow the existing road network (Mavromatidis et al.,
2018a). Again, by modelling a new development, Keirstead et al. (2010) did not have to
take the road network into account as the district was undeveloped. However, Weber and
Shah (2011) noted that road-following restricts the interconnection of nodes in an existing
district. In fact, Voll et al. (2013) did not extend a district cooling network to one building
in their networked model as a major existing road would prevent the pipe from being laid.
Morvaj et al. (2016) examined the impact that road-following has on the optimal solution,
using an abstract network of twelve buildings. When not constrained to road-following, any
building could connect to any other building in the network. Morvaj et al. (2016) found that if
road-following was required, buildings were less likely to connect into a centralised network.
Thus, models which do not consider the routing of distribution networks may overstate the
viability of a centralised system (e.g. Akbari et al., 2016; Bucciarelli et al., 2018; Li et al., 2016a;
Mehleri et al., 2012; Reddy, 2017; Wouters et al., 2015).

The temporal dimension

An energy system model is described along several dimensions, including the number
of nodes, technologies, energy carriers, and steps in time. The longest of these dimensions
is, almost universally, time. While the a district rarely increases above 20 nodes, the time
horizon for optimisation is rarely below 20 time steps. The preferred resolution is hourly,
spanning over a year for planning models and over a day for operation scheduling models.
But, in planning models this equates to 8760 elements in time dimension. Only a few models
manage to maintain this resolution. Orehounig et al. (2015) and Capuder and Mancarella
(2014) do so by heuristically selecting technology portfolios, and avoid the complexity of
including technology capacity as a decision variable. Other models reduce spatial resolution
down to a single node (Gabrielli et al., 2018; Garcia and Weisser, 2006; Kotzur et al., 2018a;
Kotzur et al., 2018b). Only five studies in the scope of this review included an entire district
network, full temporal resolution for a full year, and endogenous technology capacity in
their models (Buoro et al., 2014; Keirstead et al., 2010; Mavromatidis et al., 2018a; Voll et al.,
2015). It is not surprising that so few models maintain both the temporal resolution and scale
required to reach 8760 time steps since linear programming algorithms tend towards solving
in a polynomial time, relative to the problem size (Megiddo, 1986).
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In optimising the operation schedule of a model, higher temporal resolution can better
capture peaks and troughs in demand. However, to maintain model tractability, a lower
temporal resolution may be required. Downsampling is the process of aggregating higher res-
olution data into a lower resolution set, usually by averaging the values of higher resolution
data points, such as the average of 12 5-minute data points into a 1-hour data point. Figure
2.1 illustrates the case of downsampling from a resolution of 5 minutes to 1 or 12 hours. The
one hour dataset captures the key shape of the profile, including the smaller morning peak,
higher afternoon peak, and lower overnight demand, but small pertubations within an hour
period are lost. For instance, the morning energy demand peak occurs at 08:00 - 09:00, but the
largest value around 08:30 is underestimated. Similarly, a dip in demand at 11:00 is smoothed
out. Not only does the 12-hour downsampled profile not capture small pertubations, but it
also misses the key shape of the 5-minute profile. In fact, it only accurately reflects energy
demand from 12:00 - 14:00.
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Figure 2.1 UK electricity demand profile for a representative winter day, from http://www.gridwatch.
templar.co.uk/. Profile is aggregated from 5-minute power consumption (line) to hourly and 12-hourly
energy consumption (bars), given per hour for ease of comparison.

When adjusting the temporal resolution in energy system optimisation, Faille et al. (2007)
showed that downsampling from a 10-minute to a 1-hour resolution led to different results.
Yet, several models do downsample, usually from a 1-hour resolution model to a lower resol-
ution. Similar to the aggregation of buildings into nodes, downsampling can be considered
as the aggregation of hours into timesteps. Li et al. (2016a) considered 2-hour timesteps, while
others defined a timestep as four hours (Christidis et al., 2012), six hours (Voll et al., 2015),
and twelve hours (Haikarainen et al., 2014; Söderman, 2007; Söderman and Pettersson, 2006).
In some studies, the degree of downsampling varies in a day to minimise its effect on the

http://www.gridwatch.templar.co.uk/
http://www.gridwatch.templar.co.uk/
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description of the temporal profile. Weber and Shah (2011) used six timesteps which range
in length from one hour to nine hours, with the longest timestep covering the overnight
period. The same profiles have since been used in several other studies (Akbari et al., 2016;
Mehleri et al., 2012; Zhang et al., 2015a). Over a one year horizon, there are studies which
even downsample to monthly timesteps (Majewski et al., 2017; Voll et al., 2013). Considering
longer time horizons, Tanaka et al. (2017) optimised with one year timesteps over 10 years
in their model DGOPT, while Cai et al. (2009) and Farzaneh et al. (2016) both used five year
timesteps over 15 and 20 years, respectively.

Most models choose to represent all days in the timeseries by a smaller number of typical
days (TDs)1, instead of, or in tandem with, temporal downsampling. A TD will maintain an
hourly resolution, but is expected to represent multiple days for which it is typical. When
calculating operation costs using 1-hour resolution data, there are still 24 timesteps in a TD.
Energy generated and consumed in each timestep will be multiplied by the weight assigned
to the TD, equal to the number of days for which it is typical. For instance, Weber and Shah
(2011) clustered days based on seasons. Each TD used to exemplify a summer, midseason,
and winter day represented 92, 153, and 120 days, respectively. By using seasons to cluster,
a model will use three or four TDs (Koltsaklis et al., 2014; Omu et al., 2013; Wouters et al.,
2014; Wouters et al., 2015). Indeed, as well as reducing the time resolution into six timesteps,
Weber and Shah (2011) clustered the year into three seasons. Months are also commonly used,
leading to twelve TDs (Morvaj et al., 2016; Omu et al., 2015).

Seasons and months are subjective clustering choices. More recently, clustering algorithms
have been used to select TDs from a high resolution timeseries. Kotzur et al. (2018a) compared
several algorithmic approaches to timeseries aggregation in district energy systems, including
‘hierarchical’, ‘k-means’, and ‘k-mediods’. Instead of selecting days based on subjective
similarity, such as months or seasons, days are clustered based on their objective similarities.
Each algorithm undertakes a different method of comparing and clustering profiles from each
day, although all algorithms aim to minimise error between each day in a cluster. Algorithmic
approaches proved more accurate at emulating the full timeseries optimisation results when
compared to the average of subjectively chosen clusters. However, the error in objective
function value only became satisfactorily small when upwards of 72 TDs were used to
describe the full, 365 day timeseries.

To ensure ‘peak-load’ days are not lost in clustering, it is possible to retain some days as
independent from any typical day. Pfenninger (2017a) referred to these as ‘masked days’ as,
once chosen, they are not subjected to clustering. Kotzur et al. (2018b) also introduced peak-
load days, both in a masked approach and by using the peak-load day in a cluster, instead of
the mean or median of all days, as the typical day. In both studies, the introduction of peak-
load days improved the accuracy of the reduced timeseries model. Despite not clustering,
Voll et al. (2013) included two peak-load days to their month timesteps, resulting in a model
with 14 timesteps in a year. Mavromatidis et al. (2018c), on the other hand, combined both
algorithmic clustering and peak-load day masking. This study used ‘k-mediods’ to select 12
TDs and two peak-load days representing highest heat and electricity demand.

1Typical days are also known as representative days in some studies.
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The use of TDs leads to fewer timesteps in a model. When clustering a year into four
typical days, Omu et al. (2013) reduced the time dimension from 8760 timesteps to 96 timesteps.
This order of magnitude dimension reduction will likely have led to greater than an order
of magnitude reduction in solution time (Gabrielli et al., 2018; Pfenninger, 2017a). However,
the transition between days in the year can no longer be modelled. This does not present
a problem for the representation of most technologies, since they are not constrained inter-
temporally (i.e. their operation one hour is independent of other hours). However, storage
technologies, which are constrained inter-temporally (discussed further on page 20) cannot
be operated between TDs. For instance, the stored energy at midnight in TD 2 is not a
function of the stored energy at 23:59 in TD 1. This poses a problem for 18 of the studies
under consideration in this review, which use both typical days and model storage devices. A
common solution is to operate the storage devices on daily cycles, whereby the storage at the
beginning of a typical day has to match the storage conditions at the end of that typical day
(Gabrielli et al., 2018; Kotzur et al., 2018b; Marquant et al., 2017; Wakui et al., 2014). However,
this daily cyclical constraint precludes the modelling of seasonal storage. Where capacity
planning is included in the optimisation, no optimal solution would size a storage device
larger than required to meet daily storage needs.

To handle seasonal storage, the time dimension could be divided into timesteps and
datesteps. Timesteps represent each discrete time interval, retaining the definition assigned
to them earlier in this section. Datesteps consider the timeseries at a 24-hour downsampled
resolution, equating to 365 datesteps in a year. Timesteps must retain a resolution lower than
24 hours to fit with this datestep definition. Each datestep is assigned to a TD.

Storage can now disaggregated into intra-cluster storage (for each TD) and inter-cluster
storage (for each datestep). These two storage types are abstract, only gaining physical
significance when recombined by summation. Intra-cluster storage tracks the net flow of
stored energy in a particular TD and is a fixed profile for all days associated with that TD.
Inter-cluster storage tracks the reservoir of energy across the year and is updated at the end
of each datestep based on whether energy has been added (positive intra-cluster storage at
the end of the TD), has been removed (negative intra-cluster storage at the end of the TD), or
remained constant (zero intra-cluster storage at the end of the TD) across a TD.

Figure 2.2 shows an example five-day storage profile. Days one and three are assigned to
TD 1 and days two, four and five are assigned to TD 2. Using only timesteps, the storage must
be zero at the end of each day. However, using timesteps and datesteps, intra-cluster storage
can be either positive or negative at the end of a typical day, provided the inter-cluster storage
does not go below zero. In TD 1, some excess stored energy is available at the end of the day.
This spills over into the next datestep, allowing TD 2 to draw more energy from storage than
would otherwise be possible. The maximum capacity of the storage vessel is given as the
maximum sum of inter- and intra-cluster storage associated with a TD. The combination of
these two timeseries dimensions has been tested in two methodological studies (Gabrielli
et al., 2018; Kotzur et al., 2018b). In both studies, the error in storage capacity reduced when
using TDs compared to using the full timeseries. There is a time penalty incurred relative
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to the use of daily cyclic storage, although the penalty is still at least an order of magnitude
lower than modelling with the full timeseries.
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Figure 2.2 Example of a) daily cycle storage and b) inter-cluster storage when using TDs to describe a
full timeseries. Daily cycle storage requires that the storage vessel is fully discharged at the end of
each day and that all days within the same cluster operate identically. Inter-cluster storage seperates
the storage vessel into two abstract vessels: intra-cluster storage and inter-cluster storage. Intra-cluster
storage can be negative or positive (or zero) at the end of each day, but must have the same profile
on all days within the same cluster. The inter-cluster storage vessel only changes at the start of each
day in the timeseries. It is independent of clustering and is respectively charged or discharged by the
end-of-day state of the intra-cluster storage. The upper trace in b) shows the two abstract vessels, the
lower trace shows their superposition, which is the physical operation of the storage vessel.

When optimising only for technology operation, an hourly time resolution is standard.
There are no cases of time resolution lower than this and Good and Mancarella (2017) even
increased the resolution to 30 minute timesteps. However, the time horizon of operation
models is shorter than in planning models. Only Capuder and Mancarella (2014) and
Orehounig et al. (2015) run the operation optimisation over an entire year. A one day time
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horizon is far more common (Bischi et al., 2014; Bucciarelli et al., 2018; Cesena and Mancarella,
2018; Good and Mancarella, 2017; Pazouki et al., 2014; Reddy, 2017; Vahid-Pakdel et al.,
2017; Yokoyama et al., 2014; Zheng et al., 2018). To consider a longer time horizon whilst
maintaining a small time dimension, Wakui et al. (2014) introduced TDs to operation schedule
optimisation, selecting one for each month in the model.

There is always a fixed limit to the length of the time horizon; a system cannot be modelled
ad infinitum. Usually, planning models consider a one year horizon, ignoring inter-annual
variations in parameters. Although temporal resolution is heavily reduced, models which
include multi-year time horizons show clear inter-annual variation in parameters and results
(Cai et al., 2009; Farzaneh et al., 2016; Tanaka et al., 2017). End-user demand increases from
year to year, almost doubling in Delhi over 20 years (Farzaneh et al., 2016) and requiring
a three-fold increase in technology capacity over 20 years in Tokyo (Tanaka et al., 2017).
Models that use a one year time horizon in planning technology capacity will often consider
that year as a ‘typical’ year, similar to TDs (Mavromatidis et al., 2018b; Wakui et al., 2014;
Yokoyama et al., 2016). The resulting optimal technology portfolio is thus valid for the given
typical year, yet ignores how the supply infrastructure will change over a lifetime of 15
(Capuder and Mancarella, 2014), 20 (Wouters et al., 2015), or even 40 (Marquant et al., 2017)
years. Additionally, in considering a year as ‘typical’, storage capacity must be modelled
accordingly. The storage at the beginning of the year must equate to the storage at the end
of the year. Without cycling the storage, if there is additional stored energy of Y units at the
end of a year, that would balloon to 20Y units over a 20 year period. However, ‘typical’ year
storage capacity will not have factored in the additional capacity required to ensure a 20Y
surplus after 20 years.

2.1.2 Energy technologies

The supply portfolio of a model comprises energy technologies, which may be exogenous or
endogenous within a model. Exogenous supply portfolios are used in optimisation when
designing an operation schedule for a known system (e.g. Good and Mancarella, 2017; Vahid-
Pakdel et al., 2017), or when the portfolio is limited to a small number of scenarios (Capuder
and Mancarella, 2014; Orehounig et al., 2015; Wouters et al., 2014). In most cases, the supply
portfolio is endogenous, and plays a major role in the purpose of a given study, namely to
make purchase options for a district to meet demand whilst minimising a given objective. The
number of possible technologies can vary, from just two (Keirstead et al., 2010; Reddy, 2017;
Söderman, 2007) to over ten (Farzaneh et al., 2016; Kotzur et al., 2018b), but most consider
around five to eight technologies. Factors such as which technologies to purchase and their
capacity, location, and operational dispatch must all be considered in many models.

Conventional technologies
Conventional energy technologies are those which are most frequently found in exist-

ing energy systems. They meet the demand of only one energy carrier and are generally
considered to be completely dispatchable, i.e. available to meet energy demand at all times.
Thermal demand and electricity demand are conventionally met by geographically opposing
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technologies. Conventional thermal technologies are sited within a building, while electricity
demand is met by a national electricity grid, where energy generation is geographically far
from points of consumption.

A natural gas boiler (NGB) is the conventional heat provision technology. NGBs are
represented in models as energy supply technologies which consume a fuel at a given
efficiency to provide heat (Figure 2.3a). Although natural gas is the commonly assigned fuel,
biomass, oil, wood, and electric boilers are also studied (Kotzur et al., 2018a; Kotzur et al.,
2018b; Mavromatidis et al., 2018a; Mavromatidis et al., 2018c; Omu et al., 2013; Omu et al.,
2015; Wakui et al., 2014; Yazdanie et al., 2016). The efficiency by which they operate depends
on the study, ranging from 70% (Jennings et al., 2014) to 95% (Buoro et al., 2014).
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Exhaust

(a) Natural gas boiler.

Electricity

Cold 
water

Heat dump

(b) Electric chiller.

Figure 2.3 Graphical representation of conventional energy technologies, as depicted in linear energy
system models. Heat dump and exhaust energy streams refer to lost energy, quantified in models
using technology efficiency.

Cooling demand is typically met by an electric chiller (ECh), sometimes referred to as
an electric heat pump. They are represented similarly to boilers, but a secondary loop is
required to describe the medium to which heat is dumped when producing cold air or water
(Figure 2.3b). Usually, this medium is air and is described by an air source heat pump
(AHP) operating in cooling mode. Cooling AHPs employ rooftop units to dump heat directly
into the local atmosphere (Zmeureanu, 2002). Water and the ground are also possible heat
dumping media. Ground source heat pumps (GSHPs) capitalise on the relatively static,
low ground temperature and are also frequently included in models (Jennings et al., 2014;
Mavromatidis et al., 2018a; Omu et al., 2015). Instead of considering technology efficiency,
which requires an understanding of heat transfer to the dump medium, cooling technologies
use the coefficient of performance (COP) as measure of technology performance. The COP
is defined as the technology thermal output relative to electrical energy input. COP values
above 1 are expected, so should not be confused with technology efficiency, for which an
efficiency greater than 1 (100%) would be thermodynamically impossible. As with boiler
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efficiency, there is little agreement on chiller COP. Values range from 2.5 (Buoro et al., 2014) to
5.02 (Yokoyama et al., 2014).

As districts are most prominent in cities, access to national grid electricity (GridE) appears
in most studies. This electricity can be purchased from the grid, and it is possible to sell excess
electricity back to the grid; it is concurrently an infinite source and infinite sink of electricity
within the model. For this, a technology is rarely modelled. Nevertheless, intricacies of AC
power flow are included by some studies. Where electricity is the only energy carrier, studies
often revert to an electrical power system representation. This includes a substation with
a power factor and power transformation capabilities (Bucciarelli et al., 2018; Reddy, 2017;
Tanaka et al., 2017). In linear multi-energy district models, substations are not modelled. In
some studies, local generators are modelled instead of the grid. Diesel generators are the
incumbent method for meeting demand in an electrical system representing Grenada (Garcia
and Weisser, 2006) and in an illustrative U.S. district (Hoke et al., 2013).

Multi-energy technologies

Most studies create models to investigate the possibility of lower dependence on con-
ventional technologies. One method involves the use of waste heat to meet both heat and
cooling demands. The waste heat usually comes from the exhaust of an electricity generator,
or prime mover, creating a CHP technology from conventional technologies such as Stirling
engines (SEs), gas turbines (GTs) or internal combustion engines (ICEs), or from the novel
use of fuel cell (FC) technologies (Figure 2.4a). The available heat from a CHP technology
depends on its electrical efficiency and is related to the electrical power output using the
heat-to-power ratio (HTP). If a technology has a higher electrical efficiency, its heat output
and HTP will inevitably be lower. Additionally, not all the waste heat from a CHP technology
will be useful, due to its low temperature, or will be lost in heat transfer, leading to CHP
technologies which have ‘overall’ efficiencies of 80% to 90% (Zhang et al., 2015a).

Depending on the difference between heat and electricity demand in a district, certain
technologies will prove more suitable than others. Zhang et al. (2015a) found that a relatively
high heat demand favours the use of ICE or SE technologies, which both have a relatively
low electrical efficiency and reciprocally high HTP. Similarly, Koltsaklis et al. (2014) found
that there was a greater probability of a SE or ICE being selected for installation in a district
when optimising 1,000 Monte Carlo generated scenarios. However, in most scenarios studied
by Zhang et al. (2015a) there was a sufficiently low heat demand to warrant investment in a
proton exchange membrane FC CHP, due to its relatively high electrical efficiency of 40%.
Distinguishing different CHP technologies is not common practice, however, with only a
few studies choosing to do so (Bischi et al., 2014; Mehleri et al., 2012; Wouters et al., 2014).
Therefore, the prime mover is not specified, leaving only the fuel input, technology efficiency,
and HTP for a generic CHP to be defined.

For exhaust heat to produce cooling, a heat recovery absorption refrigerator (HRAR) is
required. Similar to an electric chiller, a HRAR depends on a refrigerant cycle to provide
cooling. In an electric chiller, a gaseous refrigerant is compressed. This high pressure
refrigerant vapour is then condensed by transferring energy to an external source: the heat
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dump medium. The pressure of the resulting liquid refrigerant is reduced, by use of an
expansion valve, before re-vapourising by drawing heat from the space cooling water flow.
However, in a HRAR, a high pressure refrigerant vapour can be prepared by applying heat
to a water-refrigerant solution (Srikhirin et al., 2001). In doing so, electricity is replaced by
heat as the primary energy source for the technology (Figure 2.4b). Although electricity is
required to drive a pump in the HRAR, the energy consumption is generally considered
negligible (Srikhirin et al., 2001).

While a HRAR is not a multi-energy technology, it is often considered as part of a single
CCHP (Figure 2.4c) which produces electricity, heat, and cooling simultaneously. In the same
vein, a CCHP can be formulated by the inclusion of an ECh powered by the electrical output
of a CHP. Ameri and Besharati (2016) included both an ECh and a HRAR in their model of
a CCHP. They found that the inclusion of both technologies ensures greater overall use of
the multi-energy system, with the HRAR providing baseload cooling, topped up by the ECh
at peak loads. However, the ECh often operated conventionally, drawing directly from the
grid. In contrast, Majewski et al. (2017) placed a HRAR at each node, powered by a CHP-fed
district heating system. The whole system acts as a CCHP, but cooling is decentralised and
heat and electricity are centralised. Omu et al. (2015) found that it is more cost-optimal to
invest in a HRAR than an ECh, if a model must rely on a CHP. But, if a model is free to
choose whether to invest in a centralised system, Wouters et al. (2015) found that EChs were
more favourable than CHP driven HRARs for an illustrative Australian district. Most studies
which include cooling demand allow the installation of an ECh or a HRAR. Uniquely, Ren
et al. (2010) only modelled a HRAR as being able to meet cooling demand, yet direct gas
firing was another possible heat source, which allowed the HRAR to be disconnected from
the CHP.

As with boilers, the most common fuel source for a modelled CHP is natural gas. Yet,
there are exceptions. Orehounig et al. (2015) and Zheng et al. (2018) model biomass fuelled
CHPs, in which the CHP contributes heavily to meeting system demand. Henning et al. (2006)
even modelled a CHP with seven fuel sources: biomass, waste, coal, rubber, plastics, oil,
and animal fat, concluding that waste as the primary fuel source was cost optimal. Waste
heat does not always need to be a by-product of electricity generation. Koltsaklis et al. (2014)
incorporated waste heat from a refinery into their model, allowing it to be purchased in
favour of CHP generated heat. The optimal solution capitalises on this cheap waste heat
source, particularly for meeting demand in buildings with a relatively high heat demand.

Renewable energy

Another method to reduce dependence on conventional technologies is to replace them
with local-scale renewable technologies. Three renewable energy technologies are included
in district-level models: wind turbines (WTs), solar photovoltaic panels (PVs) and, to a lesser
extent, solar thermal panels (STs). These technologies are unique in the way they consume
primary energy to produce electricity or heat. Instead of assuming an infinite source of energy
from a fuel, the primary energy varies both temporally and spatially. The small spatial scale
of a district system means that the latter variation has little to no effect and is not modelled
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Figure 2.4 Graphical representation of multi-energy technologies, as depicted in linear energy system
models. Heat dump and exhaust energy streams refer to lost energy, described by technology efficiency.
Prime movers in (a) and (c) refer to any device for producing work from fuel, such as a SE.
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in district-level studies. However, handling timeseries variation of renewable energy is the
primary aim of many of the reviewed studies.

In just one day, the availability of a renewable energy resource can vary significantly. This
availability may not match periods of higher demand, requiring additional technologies to
reconcile the temporal mismatch. Garcia and Weisser (2006) modelled the possibility of WT
penetration into Grenada, by coupling the variable energy source with hydrogen storage
(StoreH2) and a hydrogen FC. Indeed, the optimal coupling of intermittent renewable energy
with storage technologies is studied frequently (Bucciarelli et al., 2018; Carpaneto et al., 2015;
Hoke et al., 2013; Tanaka et al., 2017).

Renewable energy availability varies throughout the day, but when modelling it is im-
portant to understand that its value at any given time is stochastic. Wouters et al. (2015)
optimised an Australian district for a fixed solar irradiation, but showed through Monte Carlo
simulation that the actual output of the installed PVs would vary sufficiently to impact the
optimal result. Although the optimal technology capacity would not noticeably change, its
reliance on consumption of on-site production would significantly increase with a reciprocal
decrease in the export of electricity to the grid. Unlike the ex-post analysis of this stochasti-
city analysed by Wouters et al. (2015), many studies have incorporated renewable energy
uncertainty into the optimisation. Pazouki and Haghifam (2016) modelled wind energy with
a ±10% variance in a scenario optimisation model. Other approaches have included the
application of a Weibull distribution (Reddy, 2017; Vahid-Pakdel et al., 2017), a Gaussian
process (Zhou et al., 2018), and direct sampling of historical data (Tanaka et al., 2017) prior to
risk-aware optimisation.

Energy storage

When incorporating renewable energy and multi-energy technologies into district systems,
energy storage becomes a useful and sometimes necessary component of a model. Increasing
use of intermittent renewable resources within the supply portfolio leads to less control
of when energy is produced, thereby requiring storage as a buffer. Equally, since CHPs
produce heat and electricity simultaneously, storage can decouple energy streams, if heat
and electricity demand do not coincide. Storage can also allow technologies to operate at a
continuous load instead of cycling to meet varying demand. As a result, supply technologies
can feasibly capitalise on higher efficiency part-load ranges, extend technology lifetime, and
reduce maintenance requirements (Martin and Thornley, 2013; Powell et al., 2013).

In multi-energy systems, balancing energy supply and demand is often achieved by
use of thermal energy storage (StoreT). Morvaj et al. (2016) saw an increase in StoreT when
modelling scenarios involving greater PV investment. Given the non-dispatchable nature
of the PV, a CHP was forced to meet electricity demand at times of low PV output. This
led to waste heat production at times of low heat demand and therefore required StoreT.
Li et al. (2016a) used the same StoreT to store energy for heating and cooling, in a system
with a CCHP and PVs. In all seasons, thermal demand peaks were reduced by use of StoreT,
although heat and cooling demand never coincided. Similarly, Wang et al. (2015) found that
StoreT was a useful asset, particularly when system heat demand was met with an increased
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contribution from either a CHP or a ST. Furthermore, when electrical battery storage (StoreE)
and StoreT are included in a model, they can both be utilised to balance the output of a
CHP that must run during the troughs of non-dispatchable renewable output (Hawkes and
Leach, 2009). As well as balancing energy supply and demand, Christidis et al. (2012) showed
that it is possible to capitalise on electricity price fluctuations, if StoreT is coupled to a CHP.
The CHP can operate when the export of electricity is most lucrative, storing waste heat for
meeting space heat demand at other times of the day.

Thermal energy is usually stored as a liquid in an insulated vessel. As such, the available
energy in the vessel is a function of its size and the liquid temperature. By considering the
volume of a storage vessel, Wang et al. (2015) saw that the actual energy storage capacity of
the vessel changed depending on the time of year. In summer, a lower temperature difference
between the stored heat and the surrounding environment led to lower effective stored energy
than in winter. Storage vessels are, however, usually described by their energy capacity (e.g.
Carpaneto et al., 2015; Li et al., 2016a; Morvaj et al., 2016) or are assumed to operate consistently
at the same temperature, effectively statically linking volume and energy (Buoro et al., 2014).
To introduce thermodynamic effects, storage vessels are given a percentage loss related
to their ‘self discharge’ rate. Gabrielli et al. (2018) applied a 0.5%/h storage loss on top
of a 0.001 f (T) loss, depending on the external temperature T. The influence of external
temperature was calculated ex-ante and applied exogenously by both Gabrielli et al. (2018)
and Wang et al. (2015). The modelled self discharge of StoreT does vary depending on the
study, ranging from rates of 0.1%/h to 5%/h (Carpaneto et al., 2015; Gabrielli et al., 2018;
Kotzur et al., 2018b; Mavromatidis et al., 2018b; Vahid-Pakdel et al., 2017). StoreEs also suffer
from self-discharge rates, but they are set lower, at around 0.05% (Kotzur et al., 2018a) to 0.1%
(Mavromatidis et al., 2018b).

Storage vessel charge and discharge are modelled similarly to energy consumption and
production of supply technologies, including an efficiency to account for losses as high as
10% for providing energy to the system from either StoreE or StoreT (Mavromatidis et al.,
2018b; Mavromatidis et al., 2018c; Pazouki and Haghifam, 2016; Weber and Shah, 2011; Zhou
et al., 2018). Additionally, charging and discharging are often limited to a percentage of the
full capacity of the storage device. By applying a maximum 50% discharge limit, Wang et al.
(2015) dictated that the modelled StoreT must discharge over at least two hours. Discharge
limits are placed on StoreTs in other studies, ranging from 40% (Mavromatidis et al., 2018b)
to 60% (Li et al., 2016a). Wouters et al. (2015) discounted StoreT limits, choosing to only limit
the charge and discharge of StoreE to 90% and 85% of its capacity, respectively.

Another storage type, StoreH2, is relatively bespoke, but is modelled in both electricity-
only districts and multi-energy districts. Al Rafea et al. (2017) modelled the use of excess
power from intermittent renewable technologies to generate hydrogen by electrolysis for
storage. When sufficient hydrogen has been accumulated, they suggest that it can be ‘injected‘
into the national natural gas grid, in which the hydrogen is blended back into the national
gas network. Indeed, blending hydrogen with natural gas is becoming a more prominent
method for handling hydrogen production by electrolysis, with most modern appliances
being capable of burning blends up to 20% hydrogen, by volume (Quarton and Samsatli, 2018).



22 | Literature Review

Disconnected from national infrastructure, Garcia and Weisser (2006) modelled StoreH2 as
a way of handling intermittent wind power generation, but the cost of the technology was
prohibitive at 2006 prices. However, on optimising for a 2010 scenario, the expected cost
reduction was sufficiently favourable to make a StoreH2 solution viable, while also decreasing
system CO2 emissions from the 2006 optimisation by 10%. StoreH2 is often modelled as a
seasonal storage device in multi-energy systems (Gabrielli et al., 2018; Kotzur et al., 2018b).
When seasonal variations are considered, StoreH2 is more heavily relied upon than either
StoreE or StoreT.

As discussed on page 12, storage vessels are usually only modelled to operate on a daily
cycle, due to the use of TDs following time dimension aggregation. This is apparent in the
operation schedules given by Li et al. (2016a) for three TDs, while other studies recognise that
seasonal storage is not feasible following their temporal adjustments (Marquant et al., 2017;
Mavromatidis et al., 2018b; Wouters et al., 2014). To model seasonal storage, in which energy is
stored in one season for use in another, the model must be described by the full time series or
the inter-cluster storage technique described in Figure 2.2 must be used. Gabrielli et al. (2018)
used the latter approach, finding that although StoreE remained in a daily or weekly cycle,
StoreT and StoreH2 capitalised on seasonal variability in demand to charge over summer
and autumn, then discharge over winter and spring. Kotzur et al. (2018b) showed that only
12 TDs were required to converge on the correct StoreH2 capacity, providing those TDs were
algorithmically chosen and inter-cluster storage was implemented. On conducting a full year
optimisation Buoro et al. (2014) also found that stored energy would follow a seasonal cycle,
requiring StoreT eight times larger when compared to optimising for just one week.

Distribution

District energy systems with several demand nodes require distribution networks. These
may be electrical lines, thermal pipes, or natural gas pipes. Similar to supply and storage
technologies, distribution may be endogenous or exogenous in a model. If endogenous, the
available routes are defined in most models (e.g. Haikarainen et al., 2014; Omu et al., 2013;
Weber and Shah, 2011) and, as discussed previously, this routing of distribution networks
tends to follow roads. Where routes are undefined, the district is given to be a new devel-
opment with no existing road infrastructure to follow (Keirstead et al., 2010; Morvaj et al.,
2016). One exception is Ameri and Besharati (2016), who did not consider the road layout
when connecting buildings in an existing district. Instead, a straight line connection between
demand nodes was assumed.

When energy flows between two geographically separated nodes, losses to the local
environment are noticeable. Districts may be small enough to neglect electrical line losses
(Hoke et al., 2013), but thermal energy losses are likely to be incurred. However, it is not
common for pressure and temperature to be tracked in a linear district network. Khir and
Haouari (2015) uniquely modelled cold water flow in the network as a secondary mixed
integer linear programming (MILP) model overlaid onto the technology capacity planning
model. Changes in pipe pressure and temperature were linearised along the length of the
network. The initial pressure level was set by a compressor at the chiller plant, with the
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pressure needing to be high enough leaving the compressor to ensure adequate pressure at
the end of the network. Similarly, the chiller plant was able to undercool the water, such
that it maintained a sufficiently low temperature at the end of the network. Although Khir
and Haouari (2015) provided no indication of the change in result, the computational time
required to undertake such complex modelling increased by up to three orders of magnitude.
Haikarainen et al. (2014) compromised on the complexity of tracking pressure, by ensuring
that water flow in any section of pipe could overcome pressure losses associated with a
particular flow velocity and pipe diameter. Compressors were made available at every node,
and their required energy input was calculated using a linear relationship between flow
velocity and pipe diameter. No attempt was made to maintain or track temperature, however.
Instead, temperature losses were represented by a percentage energy loss per unit pipe
length.

To avoid increased complexity, it is common to ignore both system pressure and temperat-
ure. Most studies only apply a percentage loss to the energy being distributed in the network
(Mavromatidis et al., 2018b; Morvaj et al., 2016; Orehounig et al., 2015; Weber and Shah, 2011)
or apply no loss at all (Li et al., 2016a; Omu et al., 2013). Where energy losses are considered,
they are usually given per unit pipe length and constitute 5% - 10% of the heat distributed
in the network (Haikarainen et al., 2014; Weber and Shah, 2011), although Taljan et al. (2012)
found that an existing district in Australia had recorded average network losses of 24%.

At each node in a district, distribution technologies can either supply or consume an
energy carrier, depending on the direction in which they are transporting energy. As such,
they are usually considered as two linked technologies, acting similarly to a supply or
demand technology. Energy that is consumed in one node is then instantly available to be
supplied at another, connected node. Weber and Shah (2011) also included an energy cascade
equation in their representation of the network, to ensure that heat provided to the network is
at or above a required temperature. At each cascade level, temperature is fixed, which allows
mass flow to be tracked linearly relative to energy flow. Christidis et al. (2012) calculated
mass flow rates ex-ante for the Berlin-wide heating network, based on known, temporally
varying temperatures. Pump power requirements throughout the network could then be
calculated, using the known flow rates.

Akbari et al. (2014) noted that if any distribution lines are bi-directional, or form loops
when connected to specific nodes, an unrealistic dissipation of heat may occur. Heat could be
extracted from a node then recirculated back to the same node in the same timestep, but with
lower energy content due to heat dissipation from the pipe. It may prove optimal to dissipate
this heat if, for instance, a CHP would benefit from producing more electricity without a
suitable source of heat demand. Instead, several studies link nodes in the district heating
network such that no node can be revisited, i.e. flow must be unidirectional along all pipelines
2 (Akbari et al., 2014; Li et al., 2016a; Marquant et al., 2017; Mehleri et al., 2012; Morvaj et al.,
2016; Wouters et al., 2015). The distributed energy must flow only in one direction, based on

2This approach has been likened to the ‘travelling salesman’ problem (Akbari et al., 2014), a classic optimisa-
tion problem in which the shortest path to connect a number of points is sought, finishing at the starting point
without revisiting any intermediate point.
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the order in which the nodes are linked. This approach ignores the return flow of heat, but as
the return flow holds no ‘useful’ energy it is reasonable to discount it from the model.

Few studies which model the distribution network as endogenous conclude with the
existence of a full-scale district network being optimal. Ameri and Besharati (2016) found that
only interconnecting five of the seven nodes with thermal pipelines is considered optimal
by their model. By decreasing the CO2 emissions allowed in the system, Morvaj et al. (2016)
showed that greater interconnection of distribution lines was possible. Conversely, with no
emissions constraints, one or two buildings were found to interconnect, but in their own
separated networks. All buildings in a UK 39-node network were connected together in the
optimal result given by Weber and Shah (2011), in which no emissions constraints were in
place. However, it is likely that distribution costs were not considered. The 750 - 1000 GBP/m
cost of heat distribution pipework used by Omu et al. (2013) led to no district heating network
being installed in a cost-optimal solution.

2.1.3 Energy demand

In district-level optimisation, energy demand is exogenous and assigned to a building or
node. The difficulty in finding an optimal technology portfolio is often directly caused by the
need to meet different energy demands, which vary both temporally and spatially. This may
be exacerbated by the introduction of artificial complexity in the nodes which occupy the
district. For instance, Hawkes and Leach (2009) considered a three building district including
a hospital, hotel, and leisure centre, while Zhang et al. (2015a) modelled a school, a hotel, a
restaurant, an office building, and a residential building. Each building in the district has
a unique energy demand profile and peak demand, and may also include simultaneous
cooling and heat demand (e.g. hospital, hotel, office). It is unlikely that these districts exist,
but designing a supply and distribution system for them is sufficiently complex to warrant
computational optimisation. Nevertheless, where buildings are heterogenous, the demand
may still be relatively homogenous. Omu et al. (2013) modelled a district including a café,
office, residential space and workshops. Their electricity demand profiles had very similar
shapes, albeit with different peak loads. The shape of heat demand profiles were more
variable, however.

Some districts have more homogenous end-use. Residential areas are a particularly
common example of this, where nodes in the network have exactly the same profile shape,
albeit with a different peak demand (Ameri and Besharati, 2016; Wouters et al., 2015; Zheng
et al., 2018). Orehounig et al. (2015) also modelled a residential area, but took into account
the age of different buildings, thereby producing different heat demand profiles. However,
since occupants follow the same energy use patterns, these buildings had exactly the same
electricity profile shape. Buoro et al. (2014) modelled an industrial site, but noted that
demand between buildings will differ, depending on the production taking place in each
building. Although Koltsaklis et al. (2014) modelled the interaction between an industrial
and residential area, only the residential area had heat demand since the industrial area was
a source of waste heat.
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A good knowledge of the spatio-temporal variations in building energy demand is
required when preparing an optimisation model. If the district consists of existing buildings,
historical demand data may be used directly (Buoro et al., 2014; Jennings et al., 2014). Where
no historical data exists, such as for new buildings, demand can be simulated (Li et al., 2016a;
Mavromatidis et al., 2018a; Morvaj et al., 2016). Indeed, the SynCity optimisation model
developed by Keirstead et al. (2010) could simulate demand. Although this would suggest an
optimisation model with endogenous demand, the internal workflow actually led to fixed
demand prior to optimisation. However, simulations require detailed knowledge of the
buildings. When a district comprises several types of heterogeneous buildings, the quantity
of required data and man-hours may be prohibitive (Reinhart and Cerezo Davila, 2016).
Additionally, they are difficult to validate. For instance, simulated and actual demand of
commercial buildings in the UK may exhibit discrepancies of 16%–500% (The Carbon Trust,
2011). A more favoured approach in district energy optimisation is to use archetypal or
reference demand profiles from relevant buildings as representative of future energy demand
for the district (Fonseca and Schlueter, 2015; Mehleri et al., 2012; Omu et al., 2013; Swan and
Ugursal, 2009).

2.2 Shortcomings of existing models

The previous section presented the existing paradigm in modelling district energy systems.
However, there are several pitfalls to these methods. Namely, the models aggressively
simplify the problems, place too much weight on the validity of deterministic results, and
are not sufficiently transparent such that they can be easily reproduced. Each of these
shortcomings will be discussed in this section, alongside examples of state-of-the-art methods
which have recently been studied to address them.

2.2.1 Model simplifications

To derive useful information from energy system optimisation, the limitations of the approach
must be understood. Linear models are often chosen to represent districts because they can
solve a problem in a reasonable amount of time. They also deterministically achieve a ‘global’
optimum, giving a modeller the best possible solution for the provided inputs. Inevitably, the
quality of data inputs has a profound effect on the optimum solution. To receive a realistic
result from optimisation, the inputs themselves must be as good a representation of reality
as possible. However, reality is often nonlinear and thus cannot be represented in a linear
model, even if the data is available.

For instance, due to the complex processes used by most technologies to convert and
store energy, their efficiency profiles tend to be nonlinear and dependent on several extern-
alities. Performance curves of technologies such as CHPs, chillers, and heat pumps can be
quadratic (Basu, 2013; Wu et al., 2012) or even cubic (Best et al., 2015; Ikeda and Ooka, 2016).
Metaheuristic algorithms can handle these complexities, but linear algorithms cannot. This
limited the scope of the RESCOM MILP model, in which commercial properties were not
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modelled due to worries that cooling systems are too nonlinear (Jennings et al., 2014). More
often, however, existing linear models ignore this complexity by using only the nominal
or reference efficiency of a technology, i.e. the efficiency at full load (e.g. Buoro et al., 2014;
Carpaneto et al., 2015; Koltsaklis et al., 2014; Zhang et al., 2015a).

The process of storing thermal energy does not require energy conversion, but has its own
complexities. When water is stored in a tank, it is usually stratified (Nielsen, 2005). Hot water
enters the top of the tank and cold water is extracted from the bottom of the tank. There
exists a region in these tanks in which a temperature gradient exists between the hot and cold
regions, considered to be unused from a useful energy perspective (Campos Celador et al.,
2011; De Césaro Oliveski et al., 2003). To represent this region, the tank is usually discretised
into vertical layers, between which differential equations relating mass and energy flows
can be resolved. It is agreed that a 1-D representation of the tank is possible, as temperature
gradients in the horizontal plane are insignificant compared to those in the vertical plane
(Campos Celador et al., 2011; Kleinbach et al., 1993). There is less agreement on the number
of layers necessary to fully represent a tank, from anywhere between 3 to 200 (Rosen, 2001).
However, any existence of layers is ignored by current linear optimisation models. Indeed,
Steen et al. (2015) admitted that temperature dependent storage could not be modelled in
the linear framework DER-CAM due to the nonlinearities imposed by temperature tracking.
Instead, models suppose the storage medium is ideally stratified or perfectly mixed, with
no vertical heat gradient. As a result, models only need to consider the energy charge and
discharge and some percentage self discharge of the vessel.

Distribution networks are also necessarily simplified. Thermal networks are subject to
more thermodynamic complexities than storage vessels, given that the energy carrier is not
static. In fact, Li et al. (2016b) considered the distribution network as the heat storage medium
for a district, which required mass continuity, temperature mixing, pressure losses, and flow
rate limits to be modelled in detail. They found that they could improve on the overall
economic efficiency of the district through detailed consideration of the distribution network,
but were required to undertake nonlinear optimisation to achieve this.

Successful attempts have been made to improve on linearisation methods in linear energy
system models. Where technology operating constraints are nonlinear, curves may be piece-
wise linearised. Through this, a curve can be approximated by several linear pieces. Wakui
and Yokoyama (2014) applied piecewise linearisation to FC CHP technology efficiencies and
HTPs when modelling a building energy system. Unlike a gas engine CHP, which has a
higher rated efficiency, they argued that FC technologies have relatively higher efficiency at
part-load conditions. Indeed, they found that a solid oxide FC CHP unit provided greater
utility in optimal operation when piecewise linearised efficiencies were included. Evins et al.
(2014) applied piecewise linearisation to heat pump efficiency in a building energy system,
finding that the error in describing the curve reduced as the number of pieces increased.
However, this error was only calculated ex-ante, which neglects the impact of the piecewise
curve on the objective function value. The number of pieces was studied in greater detail
by Bischi et al. (2014), who modelled several piecewise part-load efficiency curves for CHPs
and for -heat pump (HP) units, increasing the number of pieces from 5 to 20 in different
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optimisation runs. They found that optimisation results did not vary, whether 10 or 20 pieces
were used, suggesting that 10 pieces is sufficient to describe a technology characteristic curve.

Piecewise linearisation is certainly the most prevalent method of improving technology
representation. It is used to describe technology efficiencies (Capuder and Mancarella, 2014;
Fazlollahi et al., 2014; Voll et al., 2013; Voll et al., 2015; Yokoyama et al., 2014), technology
costs (Gabrielli et al., 2018; Majewski et al., 2017), and energy distribution parameters such as
pressure, temperature, and AC power flow (Cesena and Mancarella, 2018; Tanaka et al., 2017).
It is not the only method, however. Khir and Haouari (2015) iteratively solved linearised
temperature and pressure in a heat network. But, a greater number of decision variables
resulted in a prohibitive increase in solution time. Wakui et al. (2014) also modelled heat
network temperature levels by considering heat to have lost usefulness after a set time period,
on the grounds that temperature will have dropped. This could be used to model heat
retention in the distribution, which acts as a potential storage system. Similarly, Fazlollahi
et al. (2014) considered a storage vessel as a set of discrete fixed-volume temperature levels.
Heat stored in a higher temperature level will reduce over time, filtering down into lower
temperature levels as it loses usefulness.

2.2.2 Model determinacy

Linear optimisation is deterministic, that is, the optimal solution for a given set of input
parameters will always be the same. However, the deterministic nature of the model has its
limits; the optimum is only valid for the values assigned to the set of input parameters and
the specific combination of those parameters in the objective function. Any adjustment to the
parameters or objective is likely to change the value assigned to a decision variable. A study
which analyses a single model configuration is thus ignorant of the robustness to uncertainty
associated with their optimal technology investment portfolio.

Uncertainty
Sensitivity or scenario analysis are the standard approaches to handling parameter uncer-

tainty or updating the objective. In both approaches, several deterministic models are created,
each with different values assigned to particular parameters. The difference between models
is analysed, to compare the impact of parameter variation on the objective function value
(OFV). In sensitivity analysis, a single parameter is varied between models, thus assessing
the sensitivity of the OFV to that parameter. If the set of runs does not vary significantly
in OFV, then the system is not not sensitive to the value assigned to a particular parameter.
Wouters et al. (2015) used sensitivity analysis to consider the impact of energy prices, finding
that the OFV increases with gas price increases, but not electricity price increases. However,
the optimal distribution network changes most with electricity price changes.

Several parameters may be varied in scenario analysis. A modeller can compare various
combinations of parameters that they deem plausible, although it is difficult to attribute
impact on the OFV to any one parameter. Omu et al. (2015) considered scenarios in which
the maximum capacity of technologies is varied. As such, they were able to simulate the
possibility of a technology existing, or not, in the model. In doing so, they compared systems
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with demand met by all-electric technologies, building-level technologies, or district-level
technologies. Changing the scenario resulted in different system costs, CO2 emissions, and
air quality, although no attempt was made to include all possible technologies to see what the
cost-optimal technology combination would be. Rather than just limit the available technolo-
gies for selection in planning optimisation, some studies use scenarios with fixed technology
capacities so that only the operation schedule needs to be optimised, thus simplifying the
problem at the expense of heuristically selecting capacities (Orehounig et al., 2015; Wouters
et al., 2014).

Scenario and sensitivity analyses do not necessarily increase understanding of the robust-
ness of a system. Although they can be useful to see how different parameter sets would
influence a decision maker, they do not inform a decision maker on the risk of making a
decision before uncertainty is realised, nor do they help mitigate this risk. Studies which
seek to build uncertainty into the model use robust optimisation (RO) or scenario optim-
isation (SO). In RO, the optimisation problem is reformulated to include uncertainty sets
such that constraints are ‘immunised’ against infeasibility caused by the realisation of any
value in a set (Li et al., 2011). The degree to which a constraint is immunised is a function
of a subjectively set level of ‘conservatism’. Akbari et al. (2016) used RO to account for
demand uncertainty in an illustrative district network. Here, demand is described by a ‘box’
uncertainty, which is akin to a uniform distribution. As conservatism increases, system cost
increases. Concurrently, dependence on grid electricity and the possibility of unmet demand
decreases. Zhou et al. (2018) similarly used a box uncertainty to describe wind, solar, price,
and demand uncertainty when modelling an illustrative district over one day. They studied
the participation of power-producing users in the national energy market and found that
there is less interaction with the market as conservatism increases. There is also a greater
contribution of conventional power generation to mitigate renewable power uncertainty.

In contrast to RO, which defines the outer limits of an uncertain parameter, SO defines
distinct scenarios in which parameter uncertainty is realised. In a planning situation, decisions
on technology capacity are made without knowing which of the future scenarios will be
realised. The investment must be able to meet demand in any scenario, and minimise
costs across them. More likely scenarios are given greater weighting, and consequently
they have greater impact on the objective function. Pazouki and Haghifam (2016) sampled
from uniformly distributed uncertainty sets with a 10% variance to generate scenarios with
differing wind, energy price, and demand profiles. The introduction of uncertainty reduces
dependence on WTs in favour of CHPs. Mavromatidis et al. (2018a) considered uncertain
demand and available solar energy in a small Swiss district, finding that NGB and PV capacity
increased to account for the uncertainty.

SO is advantageous, precisely because it does not require uncertainty to be strictly
bounded. Additionally, conservatism can be applied disproportionally to the scenarios.
Disproportionate conservatism is used to penalise the realisation of scenarios which would
lead to particularly unfavourable events, even if the probability of this happening is low.
This is known as applying risk-averse SO, which stands in contrast to the aforementioned
risk-neutral SO. Mavromatidis et al. (2018c) applied various risk aversion techniques to
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their previously risk-neutral SO model, finding that there is little agreement between them
on the optimal investment capacity, but they all reduce the cost associated with the most
unfavourable scenarios.

Regardless of whether uncertainty is accounted for in the objective function, all linear
models remain deterministic. That is to say, for the same inputs, the output will be the
same. As such, it is useful to test optimisation results when exposed to new information.
Mavromatidis et al. (2018c) did not do this, and it is, therefore, difficult to understand the true
benefit of having accounted for uncertainty, i.e. what would actually happen if the uncertainty
is realised in a way that was not previously accounted for. Akbari et al. (2016) undertook an
ex-post calculation of demand which would not be met by two sets of investment portfolios,
one resulted from risk-unaware optimisation and the other from RO. When using high levels
of conservatism in RO, unmet demand reduced by more than 90% compared to the risk-
unaware model. Pazouki et al. (2014) constructed four different indicators associated with
unmet electricity demand to analyse the performance of SO results when exposed to new
operating conditions. SO resulted in the addition of StoreEs and a CHP in the investment
portfolio, which led to a better performing system according to all four indicators.

Objective

Typically, studies will consider monetary cost minimisation as the model objective in their
study. In reality, there are likely to be competing objectives when designing a system. Thus,
an investment portfolio needs to be robust to a change in objective, as well as to uncertainty.
Omu et al. (2015) calculated the emitted CO2 and health-related air pollutants following
cost minimisation of several technological scenarios, showing that the cost-optimal solution
would not necessarily have met other objectives, in this case, the minimisation of pollutant
emissions. When the minimisation of CO2 emissions is an objective of a study, it is possible
to incorporate their impact directly into a cost minimisation objective function, by use of a
weighting factor (Li et al., 2016a) or by monetisation (Al Rafea et al., 2017; Chen et al., 2016;
Christidis et al., 2012; Ren et al., 2010). The latter approach can incorporate the existing market
prices of carbon in a model, which may help balance carbon emissions and monetary cost in
an optimal solution. Although there are market prices for carbon emissions, such as those
resulting from the European Union emissions trading scheme (Hirst, 2018), they are currently
imposed on large-scale power producers and heavy industry, not on small district systems.
Instead, some studies concentrate on how a limit on system carbon emissions may affect a
system (Buoro et al., 2013; Majewski et al., 2017; Mavromatidis et al., 2018c). Incrementally
tightening a carbon emission limit leads to several solutions which describe a cost-carbon
trade-off curve, also known as a ‘Pareto front’. The Pareto front allows a designer to see how
a reduction in carbon emissions could impact cost and therefore make a final investment
decision independently of any one optimisation result.

Concurrently optimising multiple objectives, known as multi-objective optimisation, is
not possible in a single MILP model without the aforementioned use of weighting factors or
the production of pareto-fronts. Where studies have undertaken multi-objective optimisation,
the MILP component of the model has been a part of a multi-stage optimisation. Fazlollahi
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et al. (2014) ‘enslaved’ their linear model, which optimised the operation schedule for cost
minimisation, with a ‘master’ evolutionary algorithm. The master optimisation attempted
to co-minimise cost, carbon, and energy use based on limited knowledge of technology
operation. On each iteration of the master optimisation, the slave optimisation would run to
give a detailed understanding of optimal operation to feed back to the master. Multi-stage
models such as this must then iterate for a set period of time, or until an optimal investment
portfolio is converged upon. Ren et al. (2010) also considered a multi-stage model, where all
levels were linear. The master model similarly optimised the investment portfolio, but was
informed by two independent MILP slave models which were independently optimising
for monetary cost or carbon emissions, respectively. Although the models studied by Ren
et al. (2010) and Fazlollahi et al. (2014) offer a clearer understanding of the required trade-offs
between cost and carbon, they were necessarily small. The iterative process of converging on
a solution between the slave model(s) and the master can be time consuming. Thus, both
studies considered their district as only a single node and limited the timeseries to seven TDs
(Fazlollahi et al., 2014) and three consecutive days (Ren et al., 2010).

Research into balancing objectives tends to focus on carbon emissions, but other objectives
are also studied. Indeed, robustness to uncertainty can be considered a risk-minimisation
objective, when conducting RO or SO. Reddy (2017) included the minimisation of system
power losses as part of the objective of their electrical district network, while Chen et al. (2016)
and Zhang et al. (2015a) monetised the emission of pollutants other than CO2 while also
aiming to minimise cost. Energy use minimisation is also considered by Al Rafea et al. (2017)
and Fazlollahi et al. (2014). However, the purpose of this is less clear, since the consumption
of energy sources external to the district is always minimised, albeit following scaling by
the monetary cost or carbon emissions associated with that energy source. Perhaps more
important would be the minimisation of exergetic losses. In such a model, the conversion of
more ‘useful’ energy (e.g. electricity) to less useful energy (e.g. low temperature heat) would
be considered as a poor decision, due to the loss of exergy in the conversion process. Exergy
analysis is nonlinear, however, as it depends on temperature tracking. It has thus currently
only been considered by fully nonlinear models (e.g. Wang et al., 2017).

Ultimately, the monetary cost of a system is the driving force in practical decision making.
However, investment and operational costs may not be equally balanced in the way current
planning studies choose to define the cost-optimal objective. Recognising this, Fazlollahi
et al. (2014) studied the investment-operation cost Pareto front resulting from a cost-carbon
multi-objective optimisation. Lower investment cost decisions incurred a higher operation
cost, but lower carbon emissions. Consequently, the degree of reduction in carbon emissions
depends on whether the decision maker is responsible for investment, operation, or both.

2.2.3 Model transparency

The studies reviewed in Section 2.1 frequently disagree on the validity of district systems
as an alternative to conventional energy technologies. Carbon emissions could fall by 23%
(Morvaj et al., 2016), 44% (Li et al., 2016a), or 50% (Omu et al., 2013). On the other hand, they
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could also more than double, albeit with a reduction of 74% in system cost, as reported by
Jennings et al. (2014) and Mehleri et al. (2012). Cost savings are not universal either. Buoro
et al. (2014) suggests only minor savings of a few percent in cost, while Haikarainen et al.
(2014) would expect a slight increase.

Differences in results should be expected, since the case study district of each study
is largely unique and the boundaries of the model change accordingly. The setting for
each district will lead to distinct demand profiles, weather conditions, cost structures, and
technology sets. Understanding these differences can only occur if input data can be inspected.
Therefore, it is important to be clear on the data used to inform a model, and to communicate
when such data is based on simulations, expert judgement, or external sources. However, in
some studies (e.g. Carpaneto et al., 2015; Good and Mancarella, 2017; Kotzur et al., 2018a),
parameter values are only partially published. When data is available for scrutiny, the choice
of parameter values is often unclear or unsupported. For instance, Section 2.1.2 demonstrated
a clear lack of agreement on the efficiency of various technologies; few studies gave a source
for their chosen values.

In addition to lack of data transparency, the models themselves are rarely made publicly
available. As noted by DeCarolis et al. (2012), if a model is not publicly available it can
lead to concerns that there may be 1) hidden flaws or bugs in the source code or data; 2)
subjective or value-based assumptions driving the results, and; 3) an obscured or absent effect
of highly sensitive parameters in the published analysis. Additionally, unless it is a primary
methodological contribution of the study, it is difficult to ascertain the complexity with which
particular physical phenomena have been modelled. There is little incentive to make models
openly available in the academic community, where Energy Economics is the only relevant
journal requiring source code to be published alongside analysis (Pfenninger, 2017b). In the
reviewed literature of district energy models, only DGOPT (Tanaka et al., 2017) and ETEM-SG
(Babonneau et al., 2017) have made their source code publicly available. The two models
offer two extremes of the open modelling movement. ETEM-SG is part of a suite of open
source software provided by the ORDECSYS research group (http://www.ordecsys.com),
while DGOPT is the initiative of an individual to make source code publicly available
(https://github.com/ikki407/DGOPT).

Where models are closed, it is often due to their absence in any repository; the software
developed for a study, or a set of studies, may not have been formalised as software. Although
it may be possible to gain access by getting in contact with the author(s), DeCarolis et
al. (2012) did not consider these models as publicly accessible since it creates a point of
control that could be used to selectively or unwittingly deny access. Of those models which
are published, only DER-CAM is specified as closed-source. Yet, anybody can verify the
results of DER-CAM studies, as the packaged software is available for download (https:
//building-microgrid.lbl.gov/projects/der-cam), even if the source code is opaque.

Barriers to verification also stem from the software chosen to construct a model. All
studies which divulge the optimisation software used to solve their models use IBM ILOG
CPLEX (e.g. Garcia and Weisser, 2006; Zhou et al., 2018). This is a proprietary piece of software
for which a free academic licence is available. As well as being a linear optimiser, CPLEX

http://www.ordecsys.com
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offers a user interface for the definition of a model. However, doing so restricts the model
to being solved only by CPLEX. As such, these models cannot be verified or used by those
outside the academic community without incurring a high cost. GAMS is another software
used to construct models (e.g. Vahid-Pakdel et al., 2017; Voll et al., 2013), but it has no free
academic tier. Even if models are shared, they cannot be considered publicly available if the
user is required to pay a licence fee for the software needed to use and verify the models.

Recently, there have been increased calls for publicly available data and model source
code, to enable the enhancement of the energy modelling community (Cao et al., 2016;
Morrison, 2018; Pfenninger, 2017b; Pfenninger et al., 2017; Pfenninger et al., 2018). To
this end, European researchers formed the Open Energy Modelling Initiative in 2014 (http:
//www.openmod-initiative.org/). Since then, the initiative has collated over 30 models.
Of these, only Calliope, Balmorel, Oemof, PyPSA and URBS could feasibly be used for
district energy models, as these models incorporate the necessary constraints and inputs for
multi-energy systems. In general, the drive towards greater openness has focussed primarily
on national and international models. This is perhaps understandable, as these models
have the potential to influence multinational policies such as the European Commission’s
Energy Roadmap 2050 (DeCarolis et al., 2012). In contrast, district-scale models are primarily
methodological, without any explicit intent on influencing policy as of yet. This should not
preclude active involvement in the open modelling movement, however, since district-scale
research could become increasingly more important in the decision-making process. Whether
looking at a single development or designing policy on a local government level, models
will prove more useful if decision makers can engage directly with them and understand the
assumptions on which they are grounded (Pfenninger et al., 2017).

2.3 Challenges addressed in this thesis

The previous section discussed key shortcomings in the current district energy optimisation
paradigm: model simplification, determinacy, and transparency. Each has been addressed
to some extent by recent studies in the field of MILP district energy optimisation, but they
do not fully explore the impact of their methods on the decision-making process. As such,
this thesis seeks to address four key challenges perceived to be critical for enabling practical
applications of linear district energy system optimisation. By overcoming these challenges,
a tool will be developed which is usable beyond academic and methodological analysis of
district energy systems.

First, a modelling framework is developed to implement and test methodological en-
hancements in a transparent and validateable way. Chapter 3 introduces the open-source
modelling framework that has been developed to address the three subsequent challenges,
while remaining openly available to decision makers as a user-friendly tool. This availability
is particularly novel as it allows practitioners to apply the research outputs from this thesis,
with the opportunity to also extend functionality to suit their needs. Indeed, the modelling
framework itself has been adapted from its original use as a national-scale energy system

http://www.openmod-initiative.org/
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tool, in order to accommodate district energy systems. Thus, this thesis offers a blueprint for
extensibility, while itself offering transparent insights into district energy system design.

Second, model simplifications are explored in Chapter 4 through the application of
piecewise linearisation. Unlike previous studies, piecewise linearisation is studied in greater
detail in this thesis. This will entail the quantification of both ex-ante and ex-post error; the
direct comparison between a nonlinear model, piecewise linear model, and rated efficiency
model; and the possibility of optimising piecewise curve breakpoint allocation. Metaheuristic
and MILP algorithms are applied to the same building-level illustrative case study model.
A direct comparison such as this has not yet been undertaken in existing energy system
models. Where piecewise linearisation is concerned, improvements are required to increase
prevalence of its use in MILP models. This drives a detailed study into piecewise linearisation
methods, beyond the direct comparison with fully nonlinear and rated efficiency cases.

Third, a three-step methodology is developed in Chapter 5 to incorporate uncertainty in a
model. By clearly setting out the process by which a modeller can generate scenarios, prepare
a tractable SO model, and quantify the impact of model results, it is possible to develop a
practical tool. A key element of the method is that scenario generation is demand-driven.
Unlike existing studies, which assume the distribution of uncertain parameters, a data-driven
approach uses historical data to inform the generation of multi-dimensional probability
density functions. This approach facilitates validation of the model and its practical use by
decision makers who have access to data from existing, similar developments.

Fourth, the impact of competing objectives is examined in Chapter 6. Using the same
case studies, carbon, cost and risk objectives are modelled both independently and together.
Objectives are assigned to prospective decision makers, and their robustness to the realisation
of uncertainty is quantified. In doing so, it is possible to compare the inadvertent impact of a
decision across objectives. Additionally, the ability to incorporate multiple objectives into SO
is explored. In particular, SO is enhanced to make most use of the risk aversion component,
which is seldom used in existing district energy system optimisation models.





Chapter 3

Energy system optimisation

The development of Calliope, the modelling framework introduced in this chapter and used
throughout this thesis, has been undertaken in collaboration with Stefan Pfenninger (ETH Zurich).
Stefan originally developed the software for use in long term planning of national scale infrastruc-
ture. This thesis will focus on the author’s contribution, comprising almost 500,000 lines of code
in the Python programming language and two major releases which have been downloaded a
total of 13,000 times. Parts of this chapter have been published as:

S. Pfenninger and B. Pickering (Sept. 2018). ‘Calliope: A Multi-Scale Energy Systems Model-

ling Framework’. en. In: The Journal of Open Source Software 3.29, p. 825. DOI: 10.21105/joss.00825

Mixed integer linear programming (MILP) is the primary method utilised within this
research. This chapter begins by outlining the computational method by which MILP can
be used to solve linear energy system optimisation problems, followed by the detailed
description of the mathematical formulation of an energy model. The latter half of this chapter
focusses on the open source modelling framework Calliope, which has been extended in this
research to enable district-scale systems to be modelled and methodological enhancements
to be examined. Calliope is capable of translating energy system models to a mathematical
representation suitable for optimisation. Once optimisation is complete, the framework can
package and visualise the data for clear dissemination. Furthermore, the framework operates
under an open, permissively licensed Python tool-chain. As such, this chapter presents
Calliope as a practical tool to address the challenge of model transparency.

The two sections of this chapter work as a pair to present energy system optimisation
models. Figure 3.1 shows the workflow connecting the two. Calliope is used for the prepara-
tion and analysis of models. MILP is an algorithm for the optimisation of these problems.
Due to the established nature of MILP, energy system modellers do not attempt to improve
on the algorithmic approach of their models. Indeed, this separation of framework and
algorithm is standard within the district energy modelling community, where linear models
are concerned. Models such as DENO, HOMER, URBS, and DER-CAM are more accurately
defined as frameworks, which in turn depend on linear optimisers, also known as solvers, such
as IGM ILOG CPLEX (IBM Corp., 2016) and Gurobi (Gurobi, 2018).

Existing frameworks provide similar functionality. Indeed, this thesis began by using
DENO, written natively in IBM ILOG CPLEX, before moving to the development of Calliope.

https://doi.org/10.21105/joss.00825
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Figure 3.1 Workflow connecting the Calliope model framework and the linear optimiser, otherwise
known as the linear solver.

Differences between the available frameworks lie in accessibility and usability. Frameworks
which boast a user interface, such as DER-CAM and GAMS, are often inaccessible, through
restrictive licencing or inexistent packaging of the work. Although openness is becoming
more prevalent, as evidenced by the array of software collated by the Open Energy Modelling
Initiative (https://openmod-initiative.org), openly available frameworks, such as URBS and
Oemof, do not prioritise usability. Uniquely, Calliope is designed for use by a wider audience
and is openly available for its capabilities to be extended. As the aim of this thesis is to
provide a practical tool for the use of mathematical optimisation by decision makers, Calliope
proves to be an ideal candidate. Usability, alongside the more generic formulation of an
energy system model, will be discussed in greater detail in Section 3.2.

3.1 Mixed integer linear optimisation

Linear programming (LP), sometimes referred to as linear optimisation, is an extensively
used method for solving a given mathematical function. This function, known as the objective
function has a number of decision variables for which a modeller aims to find suitable values.
Depending on the aim of the problem, the value of the objective function may need to be
maximised (e.g. system revenue) or minimised (e.g. system cost). The variables can take on
any continuous number, but are constrained by additional functions which bound the feasible
space of solutions. The general formulation of the objective function and constraints applied
in an LP model is given in Equation 3.1. As the name suggests, nonlinearities cannot be
represented in an LP model. Consequently, this precludes the multiplication of two decision
variables in a constraint or in the objective function.
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Minimise or maximise c1x1 + c2x2 + ... + cnxn

subject to a11x1 + a12x2 + ... + a1nxn (≤,=, or ≥) b1

a21x1 + a22x2 + ... + a2nxn (≤,=, or ≥) b2

...

am1x1 + am2x2 + ... + amnxn (≤,=, or ≥) bm

xj ≥ 0 ∀j = 1, ..., n.

Where x1, ..., xn is the set of decision variables; c1, ..., cn are the objective coefficients; b1, ..., bm

are the constraint limits, and; a11, ..., aij, ..., amn are the constraint coefficients, which denote
how much of a requirement i is satisfied by the decision j (Smith and Taskin, 2008).

Figure 3.2 shows a bounded region for two decision variables, x and y. The objective
function, z, to be maximised is 2x + 3y. Without any constraints (Figure 3.2a), this is an
unbounded problem; the solution is infinitely large, as x and y can both continue to infinity.
Bounding the problem, using the five lines given in Figure 3.2b, provides us with a maximised
objective function value of 10. It is clear that within the solution space, known as the convex
hull, decision variables acquire their optimal values at a vertex. Capitalising on vertex
optimality, the popular simplex algorithm inspects only vertex values, sequentially ‘climbing’
the vertices of an N-dimensional convex hull to reach the optimal solution (Figure 3.3). It is
important to understand this mechanism, as constraints on decision variables can also lead
to model infeasibility. Returning to the two-dimensional example, Figure 3.2c shows how
two conflicting constraints on y means that there is no possible value that y can take.

Some variables within a model may not be continuous. Indeed, it is realistic to model
some physical phenomena discretely. For instance, a technology is switched on (1) or it
is not (0). Technologies will also be sold by manufacturers in discrete sizes, leading to
any integer number of technologies to be purchased for a system. The incorporation of
these decision variables requires integer linear programming or, because there still exist
continuous variables in the formulation, mixed integer linear programming (MILP). Unlike
an LP model, the solution to the problem might not lie on a vertex. If y can only be an integer
value, the aforementioned two-dimensional example now has an optimal solution of nine, as
depicted in Figure 3.2d. This is less optimal than the continuous solution, but more physically
representative.

Reaching an optimal solution in a MILP model is computationally harder than in its
continuous counterpart. The reason for this becomes clear when breaking down the solution
method. First, a MILP algorithm will relax constraints to allow all variables to be continuous.
If the solution to the linear relaxation does not already satisfy the integer constraints, the
closest possible solution must be found by partitioning the convex hull. This convergence of
the solution on that given by the linear relaxation is the cause of increases in solution time, as
the initial linear optimisation will take as long to solve as it would do if all variables were
linear (i.e. LP). The simplest technique for converging on the linear relaxation is to iterate over
every possible integer solution. However, in practice, this is infeasible as the solution time
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Figure 3.2 Bounded convex hull describing a two-dimensional LP problem. a), b), and c) are respect-
ively unbounded, feasible, or infeasible given continuous variables x and y. d) is feasible considering
the requirement for y to be an integer value. Objective function value z is given at feasible vertices.

z

Figure 3.3 Graphical representation of an N-dimensional LP problem being solved by the simplex
algorithm to maximise the objective function z. Figure modified from (Moore and Mertens, 2011).
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increases exponentially with the number of variables. If a problem with only binary decision
variables has n variables, then it will take 2n iterations to inspect all possible solutions. If
n = 60, a high performance computer which can process 10 trillion operations per second
will take 80 days to terminate. If n = 70, this increases to 262 years (Smith and Taskin, 2008).

Popular methods for converging on the linear relaxation of a MILP problem in a reasonable
time are the ‘branch and bound’ and ‘cutting plane’ techniques. Both methods are well
established, having been first introduced over 50 years ago (Gomory, 1960; Land and Doig,
1960). The branch and bound technique iteratively segments the convex hull, creating smaller
hulls in which to search for an integer solution. Each time segmentation occurs, a new branch
is created on the solution tree. This branch is searched until it is certain that no better solution
can be found. The best solution of all branches is then taken to be the global optimum.
The cutting plane works in reverse, by applying additional inequalities to remove possible
vertex solutions from the linear relaxation without removing possible integer solutions. This
continues until reaching the limit whereby the integer solution is on a vertex described by
the cutting planes. Cutting planes are usually used in tandem with branch and bound, as
part of the ‘branch and cut’ technique (Mitchell, 2002).

The branch and cut technique can lead to rapid convergence, particularly as it can be
parallelised across multiple cores. However, this convergence can be slow when close to the
solution of the linear relaxation. A common approach to mitigate this is to implement an
allowable ‘gap’ which will end convergence early, provided the solution is within a certain
percentage of the linear relaxation. Linear optimisers default the gap to 0.01%, but district
energy studies tend to update this, allowing gaps of 0.1% - 1% (Buoro et al., 2013; Gabrielli
et al., 2018; Omu et al., 2013). In addition, most linear optimisers extend the simplex algorithm
by applying heuristic methods to reduce the problem prior to applying simplex methods.

Solver choice also impacts solution time, which can be seen when the open-source op-
timisers GLPK (GNU Linear Programming Kit, Version 6.1 2018) and CBC (Forrest et al., 2018)
are compared with the two most applied commercial optimisers, CPLEX (IBM Corp., 2016)
and Gurobi (Gurobi, 2018). A test model, included four interconnected nodes and nine
technologies, was optimised over 8760 timesteps. Table 3.1 shows the several orders of
magnitude increase in CPU time required by open-source solvers; the GLPK solver was
manually stopped after five hours without reaching a solution. The problem began with
586,996 decision variables (continuous: 578,233, binary: 2, integer: 8,761) subject to 788,502
constraints. In the heuristic presolve phase, CPLEX reduced this to 249,377 decision variables
subject to 258,122 constraints. Variables which can be discounted during heuristic presolving
are those for which there is clearly only one value, such as setting a variable to a fixed value
when defining the model. GLPK also undertakes a presolve phase, but it is less thorough,
leaving 327,628 variables and 537,255 constraints. Both the simplex algorithm and the in-
teger problem convergence are more powerful in CPLEX and Gurobi, resulting in a model
which takes at least two orders of magnitude less time to solve than GLPK. However, CBC,
another open-source solver, performs significantly better in comparison to its commercial
counterparts, Gurobi and CPLEX. In fact, it solves the linear relaxation problem in 45 seconds,
compared to 137 seconds for CPLEX, but converging on the integer solution takes 10 times
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longer. Parallelisation across four threads reduces solution time, but is not available for the
open-source solvers. In this particular problem, parallelisation does not particularly improve
the best possible solution time, realised by Gurobi.

Table 3.1 MILP model solution time when run using different linear optimisers, showing the distinctly
greater time to solution for open-source optimisers.

Solver GLPK CBC Gurobi CPLEX

1 thread 4 threads 1 thread 4 threads

Solution time >5hrs 0:52:13 0:03:21 0:03:08 0:05:56 0:03:26

Side note on tractability of optimisation models
Many of the methods researched in district energy optimisation, this thesis included, are

driven by a requirement for tractability. In formal terms, tractability might be considered
as the necessary condition for the problem to be computed in polynomial time, i.e. within
complexity class P (Meurant, 2014, p.4). Thus NP− complete and NP− Hard (where P ̸= NP)
would be considered intractable. This classic definition is somewhat questionable, as it is
clearly more practical to solve a problem in the order of 20.1N (exponential) than in the
order of N20 (polynomial) for a large N (Rotman, 2003). Additionally, a problem that has
complexity in the order of N2 becomes impractical to solve if the number of computations,
N, is large (e.g. 1010). Goderbauer et al. (2018) recently formalised the complexity of Mixed
integer nonlinear optimisation energy system problems as NP − Hard but did not discuss
MILP problems. In fact, model complexity is rarely formalised. Instead, tractability and
practicality are interchanged. As such, a problem is considered to be tractable if it reaches an
optimal (and feasible) solution in a ‘reasonable’ amount of time. What is reasonable depends
on the modeller and the computational power at their disposal. Many studies wish to realise
solutions to models in O(100s). In this thesis, tractability is defined relative to available
computing capacity and varies from O(1, 000s) to O(100, 000s).

3.2 Calliope: an open source modelling framework

Calliope was the Greek muse of epic poetry. It is now also an open-source Python-based
energy modelling framework. Initially released in 2013, the aims of the model were:

• to be easy to read;

• to allow the modelling of any mix of technologies, by only loosely defining components;

• to be highly resolvable, both spatially and temporally;

• to enable running models on high-performance computing (HPC) clusters;

• to be dependent only on state-of-the-art Python third party libraries, and;
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• to be freely available under the Apache 2.0 licence.

The original purpose of the framework was to examine national-scale energy system
models. The software has since been used to address research questions surrounding energy
policy in the UK, Switzerland, and South Africa (Díaz Redondo and van Vliet, 2015; Pfen-
ninger and Keirstead, 2015a; Pfenninger and Keirstead, 2015b). The aims of the software are
theoretically scale independent, encompassing the formulation of any energy system model.
In reality, when using the framework to prepare district scale models, the lack of focus on
smaller scale, multi-energy systems led to inadequacies in the model. In this research, these
issues have been addressed through two major releases of Calliope, namely:

• Calliope can now model MILP problems, not just LP ones;

• multi-energy technologies can be modelled, with linked and/or unlinked energy carrier
flow;

• technologies can export energy outside the system, recognising the existence of districts
as subsystems of national-scale systems;

• revenue generation is possible, through the introduction of negative costs;

• data visualisation is more accessible to users with low Python programming literacy;

• all model parameters and sets are more verbose and are aligned with energy sector
terminology, to improve clarity of model definitions and results;

• models can be optimised for the operation schedule alone, using a rolling horizon
approach, to test the validity of an investment portfolio when exposed to ‘real’ operating
conditions;

• costs can vary in time, to simulate price fluctuations, and;

• models with high dimensionality are prepared for optimisation in a much shorter time
period, by matrix densification.

The mathematical formulation of Calliope version 0.6 is detailed in this section, with
particular focus on district energy system constraints and processes. Further details on its
functionality are available in the project documentation (https://calliope.readthedocs.io/en/
stable/).

3.2.1 Model formulation

A model of an energy system requires a user to define technologies, nodes, links, and energy
carriers. Technologies sit within nodes and can interact with other technologies within a
node, with other nodes via links, or with other entities outside the system boundary. Figure
3.4 illustrates this for a two-node district. The energy balance of each energy carrier present
in a node must be satisfied within that node.

https://calliope.readthedocs.io/en/stable/
https://calliope.readthedocs.io/en/stable/
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Supply and demand ‘technologies’ allow energy flow from and to other energy systems
outside the district boundary, respectively. Only energy carriers within the system are
explicitly defined, with carriers outside the system known as a ‘resource’. This may refer to a
positive resource that can be supplied, e.g. natural gas, grid electricity, or solar energy, or to
a negative resource that is demanded at a node, e.g. space heating, hot water, or electricity.
Supply technologies consume a resource and produce an energy carrier, while demand
technologies consume a carrier to produce a resource. Transmission technologies allow
energy carrier flow between nodes within the system, by consuming it at one node and
producing it at another. Conversion and storage technologies also interact only with system
energy carriers, but this interaction can only take place within a single node.

Decision variables, parameters, and sets
The purpose of optimisation is to calculate the values of decision variables which will

minimise (or maximise) the objective function value. In an energy system model, these
decision variables include technology capacity, energy production and consumption per
timestep, and incurred costs. All decision variables in Calliope are given in Table 3.2. Each
is indexed over a selection of dimensions, defined by the system sets and subsets (Table
3.3). Only the cost decision variable is required in the objective function; all others can be
considered as ‘auxiliary’, since they impact cost but are not present in the objective function.
Auxiliary variables are also usually the values in which a decision maker is interested and
are consequently important to track independently from the total system cost.

Table 3.2 Decision variables defined in Calliope.

Decision variable
Domain Dimensions

Verbose syntax Calliope syntax Chapter syntax

Energy capacity energy_cap Ê [0, ∞) nodes, techs

Energy carrier production carrier_prod E+ [0, ∞) nodes, techs, carriers, timesteps

Energy carrier consumption carrier_con E− (-∞, 0] nodes, techs, carriers, timesteps

System cost cost cost (-∞, ∞) nodes, techs, costs

Resource collection area resource_area R̂area [0, ∞) nodes, techs

Stored energy capacity storage_cap Ŝ [0, ∞) nodes, techs

Stored energy storage S [0, ∞) nodes, techs, timesteps

Consumed resourcea resource_con R− [0, ∞) nodes, techs, timesteps

Resource capacitya resource_cap R̂ [0, ∞) nodes, techs, timesteps

Energy carrier export carrier_export Eex [0, ∞) nodes, techs, carriers, timesteps

Operational cost cost_var costop (-∞, ∞) nodes, techs, costs, timesteps

Investment cost cost_investment costinv (-∞, ∞) nodes, techs, costs

Technology purchase switch purchased P {0, 1} nodes, techs

Purchased technologiesa units Û {0, 1, . . . , ∞} nodes, techs

Technology unit dispatch operating_units U {0, 1, . . . } nodes, techs, timesteps

Unmet demand slack unmet_demand slack+ [0, ∞) nodes, carriers, timesteps

Unused supply slack unused_supply slack− (-∞, 0] node, carriers, timesteps
a Although defined here, these decision variables are not relevant to methods described in this thesis and are therefore not referred to

hereafter.
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Table 3.3 Sets and subsets defined in Calliope.

Sets

n ∈ nodes(N) Geographic nodes in the system

(n, nr) ∈ links(L) Node pairs, defining transmission links

x ∈ techs(X) Available technologies (e.g. ‘CHP’)

t ∈ timesteps(T) Operational timesteps (e.g. ‘2017-01-01 00:00:00’)

c ∈ carriers(C) Energy carriers (e.g. ‘electricity’, ‘heat’)

cost ∈ costs Cost classes (e.g. ‘monetary’, ‘carbon’)

Subsets

store Storage technologies

conv Conversion technologies

supply Supply technologies

dem Demand technologies

trans Transmission technologies

ex Technologies which can export a carrier

prod Technologies which can produce a carrier

con Technologies which can consume a carrier

area Technologies which are constrained by physical area

Parameters are required to formulate the system constraints and the objective function.
They include maximum capacity, available resource, and technology capacity/operation
costs. Each technology subset can be constrained by a different selection of parameters.
Therefore, parameters are listed in the following sections on a per-technology basis. However,
only those parameters relevant to this thesis are given; a more detailed listing of parameters
is available in the online documentation (https://calliope.readthedocs.io/en/stable/). In
constraint definition, parameters are distinguished from decision variables by the latter being
given in bold text.

System boundary

Supply

Demand

Convert

Distribute Distribute

Convert

Convert

Store

Demand

Demand

Energy flow

Figure 3.4 Illustrative two node district, with eight distinct technologies and four energy carriers.

https://calliope.readthedocs.io/en/stable/
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Constraints
At a technology level, constraints are built over smaller subsets of the system. For instance,

in the example given in Figure 3.4, there is only a storage technology at node 2, consuming
only one of the four energy carriers in the system. Thus storage constraints will be built
over the storage ‘node::technology::carrier’ subset, which avoids the creation of superfluous
constraints for this storage technology at node 1 or for any other energy carrier. To this end,
the sparse matrix defining all possible node, technology, and carrier combinations (64 in the
illustrative example) is compacted to a dense matrix of only the relevant node, technology,
and carrier combinations (11 in the illustrative example). Hereafter, each constraint can be
assumed to be built over the relevant dense subset.

Some constraints are technology agnostic:

• Maximum energy capacity

Ên,x


≤ Êmax

n,x × Pn,x, if costP
n,x ≥ 0

= Êeq
n,x, if Êeq

n,x ̸= None

≤ Êmax
n,x , otherwise

(3.1)

• Maximum carrier export

Eex
n,x,c ≤ E+

n,x,c∀(n, x, c) ∈ (N, X, C)ex (3.2)

Table 3.4 Valid parameters for constraining a supply technology.

Parameter
Default Domain

Verbose syntax Calliope Syntax Thesis syntax

Maximum installed energy capacity energy_cap_max Êmax ∞ [0, ∞]kW

Energy efficiency energy_eff ηE 1.0 [0, ∞)

Require resource consumption force_resource R f orce 0 {0, 1}

Plant parasitic efficiency parasitic_eff ηp 1.0 [0, ∞)

Available resource resource R 0 [0, ∞]kWh/m2

Maximum installed collector area resource_area_max Rarea,max ∞ [0, ∞]m2

Collector area efficiency resource_area_per_energy_cap ηarea 1.0 [0, ∞)

Resource scale resource_scale Rscale 1.0 [0, ∞)

Supply Energy supply technologies are those which consume a resource from outside the
system boundary and produce an energy carrier within the system (Figure 3.5, Table 3.4).
Specific constraints to apply are:

• Available resource

E+
n,x,t,c

ηE
n,x,t × η

p
n,x,t

= Rn,x,t, if R f orce
n,x = 0

≤ Rn,x,t, if R f orce
n,x = 0

∀(n, x, t, c) ∈ (N, X, T, C)supply (3.3)
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Figure 3.5 Calliope supply technology.

Where R f orce is a binary parameter dictating whether a technology is dispatchable (e.g.
diesel fuel) or not (e.g. un-curtailed solar photovoltaic panel (PV)).

• Maximum carrier production

E+
n,x,t,c ≤ Ên,x × η

p
n,x,t∀(n, x, t, c) ∈ (N, X, T, C)prod (3.4)

• Available resource per unit area

E+
n,x,t,c

ηE
n,x,t

= Rn,x,t × R̂area
n,x , if R f orce

n,x = 0

≤ Rn,x,t × R̂area
n,x , if R f orce

n,x = 0
∀(n, x, t, c) ∈ (N, X, T, C)supply,area (3.5)

• Resource area capacity

R̂n,x

≤ R̂area,max
n,x × Pn,x, if costP

n,x ≥ 0

≤ R̂area,max
n,x , otherwise

∀(n, x) ∈ (N, X)area (3.6)

• Area use to energy capacity linking

Rarea
n,x = Ên,x × ηarea

n,x ∀(n, x) ∈ (N, X)area (3.7)

Table 3.5 Valid parameters for constraining a conversion technology.

Parameter
Default Domain

Verbose syntax Calliope Syntax Thesis syntax

Maximum installed energy capacity energy_cap_max Êmax ∞ [0, ∞]kW

Energy efficiency energy_eff ηE 1.0 [0, ∞)

Technology lifetime lifetime L 0 [0, ∞) years
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Figure 3.6 Calliope conversion technology.

Conversion Energy conversion technologies are those which consume an energy carrier
from within a node and produce an energy carrier within the same node (Figure 3.6, Table
3.5). Specific constraints to apply are:

• Carrier conversion

−1 ∗ E−
n,x,t,ccon

× ηn,x,t = E+
n,x,t,cprod

∀(n, x, t) ∈ (N, X, T)conv (3.8)

• Maximum carrier production

Ê+
n,x,t,c ≤ En,x∀(n, x, t, c) ∈ (N, X, T, C)prod (3.9)

Table 3.6 Valid parameters for constraining a multi-energy conversion technology.

Parameter
Default Domain

Verbose syntax Calliope Syntax Thesis syntax

Energy carrier conversion ratios carrier_ratios ratio 1 [0, ∞)

Maximum installed energy capacity energy_cap_max Êmax ∞ [0, ∞]kW

Energy efficiency energy_eff ηE 1.0 [0, ∞)

Technology lifetime lifetime L 0 [0, ∞) years

Multi-energy Conversion Multi-energy conversion technologies are those which consume
a number of energy carriers from within a node and produce a number of energy carriers
within the same node (Figure 3.7, Table 3.6). Two streams of energy production or consump-
tion may exist. Separate production/consumption streams (E+

1 and E+
2 in Figure 3.7) are

linked, such that their sum in any timestep is linked by a fixed ratio. For example, the heat
and power output of a combined heat and power plant (CHP) is linked by the heat-to-power
ratio (HTP) (Figure 3.8a). Within a production/consumption stream, multiple carriers may
be defined (e.g. E+

1,1 and E+
1,2 in Figure 3.7) that are not linked, but the sum of their production

must equal the stream production (e.g. E+
1 ). This allows an air source heat pump (AHP) to

be defined with the choice of heat or cooling output (Figure 3.8b). The combined cooling,
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Figure 3.7 Calliope multi-energy conversion technology.
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Figure 3.8 Representation of various multi-energy conversion technologies in Calliope, which may
have energy carriers linked or unlinked.

heat and power plant (CCHP) in Figure 3.8c shows both linked streams and unlinked carriers
within a stream. A ‘primary carrier’ is defined for each multi-energy conversion technology,
to which Equation 3.9 is applied to constrain the technology maximum capacity. In addition,
the following constraints are required:

• Carrier conversion

−1 ∗ ∑
c∈streamcon,1

E−
n,x,t,c

ration,x,c,con1

× ηn,x,t = ∑
c∈streamprod,1

E+
n,x,t,c

ration,x,c,prod1

∀(n, x, t) ∈ (N, X, T)conv

(3.10)

• Linking inter-stream production

∑
c∈streamprod,1

E+
n,x,t,c

ration,x,c,prod1

= ∑
c∈streamprod,2

E+
n,x,t,c

ration,x,c,prod2

∀(n, x, t) ∈ (N, X, T)conv (3.11)

∑
c∈streamcon,1

E−
n,x,t,c

ration,x,c,con1

= ∑
c∈streamcon,2

E−
n,x,t,c

ration,x,c,con2

∀(n, x, t) ∈ (N, X, T)conv (3.12)



48 | Energy system optimisation

Table 3.7 Valid parameters for constraining a storage technology.

Parameter
Default Domain

Verbose syntax Calliope Syntax Thesis syntax

Carrier ratios carrier_ratios ratio 1 [0, ∞)

Charge rate charge_rate ηcharge 0 [0, ∞)/hour

Maximum installed energy capacity energy_cap_max Êmax ∞ [0, ∞]kW

Energy efficiency energy_eff ηE 1.0 [0, ∞)

Maximum storage capacity storage_cap_max Ŝmax ∞ [0, ∞]kWh

Initial storage level storage_initial Sinit 0 [0, ∞)kWh

Storage loss rate storage_loss lossS 0 [0, 1]/hour

lossS

ηEηE

Ê

2

Ŝ
Ê

E-t1 E+t2

Figure 3.9 Calliope storage technology.

Storage Energy storage technologies are those which consume an energy carrier from
within a node and produce the same energy carrier within the same node, but at a different
timestep (Figure 3.9, Table 3.7). Specific constraints to apply are:

• Inter-temporal energy balance

Sn,x,t =


Sn,x,t−1 × (1 − lossS

n,x,t)
rest − E−

n,x,t,c × ηE
n,x,t −

E+
n,x,t,c

ηE
n,x,t

, if t > 0

Sinit
n,x − E−

n,x,t,c × ηE
n,x,t −

E+
n,x,t,c

ηE
n,x,t

, if t = 0

∀(n, x, t) ∈ (N, X, T)store

(3.13)

Where res is the timestep resolution.

• Linking storage and energy capacity, where the latter is synonymous with the charge/discharge
rate

Ên,x ≤ Ŝn,x × η
charge
n,x ∀(n, x) ∈ (N, X)store (3.14)
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• Stored energy capacity

Ŝn,x

≤ Ŝmax
n,x × Pn,x, if costP

n,x ≥ 0

≤ Ŝmax
n,x , otherwise

∀(n, x) ∈ (N, X)store (3.15)

• Maximum charge/discharge

E+
n,x,t,c ≤ Ên,x∀(n, x, c, t) ∈ (N, X, T, C)prod,store (3.16)

−1 × E−
n,x,t,c ≤ Ên,x∀(n, x, c, t) ∈ (N, X, C, T)con,store (3.17)

Table 3.8 Valid parameters for constraining a transmission technology.

Parameter
Default Domain

Verbose syntax Calliope Syntax Thesis syntax

Maximum installed energy capacity energy_cap_max Êmax ∞ [0, ∞]kW

Energy efficiency energy_eff ηE 1.0 [0, ∞)

Energy efficiency per distance energy_eff_per_distance ηE,pd 1.0 [0, ∞)/m

Distance distance distance 0 [0, ∞]m

One way transmission one_way one_way {0, 1}

ηE

Ê
E+n2E-n1

Figure 3.10 Calliope transmission technology.

Transmission Transmission technologies are those which consume an energy carrier from
within a node and produce the same energy carrier within a different node (Figure 3.10, Table
3.8). Usually, constraints are duplicated for a link, to allow transmission in both directions.
However, if the link is defined as one_way, flow will only be allowed in the direction n->nr

for a given link (n, nr). Specific constraints to apply are:

• Remote node linking

Ên,x = Ênr,x∀x ∈ Xtrans, ∀(n, nr) ∈ L (3.18)
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• Production/Consumption linking

−1 ∗ E−
n,x,t,c × (ηE

(n,nr),x,t × η
E,pd
(n,nr),x,t × distance(n,nr),x) =

En+
r ,x,t,c∀(x, t, c) ∈ (X, T, C)trans, ∀(n, nr) ∈ L

(3.19)

• Maximum transmitted energy

E+
n,x,t,c ≤ Ên,x∀(n, x, t, c) ∈ (N, X, T, C)prod,trans (3.20)

−1 × E−
n,x,t,c ≤ Ên,x∀(n, x, t, c) ∈ (N, X, T, C)con,trans (3.21)

Table 3.9 Valid parameters for constraining a demand technology.

Parameter
Default Domain

Verbose syntax Calliope Syntax Thesis syntax

Require resource consumption force_resource R f orce 0 {0, 1}

Required resource resource R 0 [-∞, 0]kWh/m2

Maximum installed collector area resource_area_max Rarea,max ∞ [0, ∞]m2

Resource scale resource_scale Rscale 1.0 [0, ∞)

Demand Demand ‘technologies’ are inverse supply technologies, with a smaller set of
available parameters with which they can be constrained (Table 3.9). Note that the resource
parameter R is negative for demand technologies. In most cases, the binary variable R f orce

is set to 1, requiring all the resource requirements of the demand technology to be met.
However, instances exist where there may be a demand technology for which the demand
need not be met, but perhaps there is a financial benefit to meeting some of the demand.
Specific constraints to apply are:

• Required resource

E−
n,x,t,c

ηE
n,x,t

= Rn,x,t × Rscale, if R f orce
n,x = 0

≤ Rn,x,t × Rscale, if R f orce
n,x = 0

∀(n, x, t, c) ∈ (N, X, T, C)demand (3.22)

Where R f orce is a binary parameter dictating whether a technology is dispatchable (e.g.
diesel fuel) or not (e.g. un-curtailed PV).
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• Required resource per unit area

E−
n,x,t,c

ηE
n,x,t

= Rn,x,t × Rscale × R̂area
n,x , if R f orce

n,x = 0

≤ Rn,x,t × Rscale × R̂area
n,x , if R f orce

n,x = 0

∀(n, x, t, c) ∈ (N, X, T, C)demand,area

(3.23)

Node Two constraints act across an entire node:

• System balance

∑
x∈X

(
E+

n,x,t,c + E−
n,x,c,t + Eex

n,x,c,t
)
+ slack+

n,c,t + slack−
n,c,t = 0∀(n, t, c) ∈ (N, T, C) (3.24)

• Available area

∑
x∈Xarea

Rarea
n,x ≤ available_arean∀n ∈ (N)area (3.25)

Objective function

Table 3.10 Valid parameters for applying costs to decision variables in Calliope.

Parameter
Domain

Verbose syntax Calliope Syntax Thesis syntax

Cost of energy capacity energy_cap costÊ (-in f , in f )/kW

Cost of energy capacity, per unit dis-
tance

energy_cap_per_distance costÊ,pd (-in f , in f )/kW/m

Purchase cost purchase costP (-in f , in f )

Cost of resource collector area resource_area costR̂area
(-in f , in f )/m2

Cost of storage capacity storage_cap costŜ (-in f , in f )/kWh

Carrier export cost export costEex
(-in f , in f )/kWh

Carrier consumption cost om_con costE−
(-in f , in f )/kWh

Carrier production cost om_prod costE+
(-in f , in f )/kWh

Interest rate interest_rate rateint (-in f , in f )

Technology lifetime lifetime L [0, ∞) years
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Costs given in Table 3.10 can be applied to the aforementioned decision variables, for use
in the objective function. The objective function is the sum of annualised investment costs
and operational costs for a given cost class k (such as ‘monetary’ or ‘carbon’):

minTSF × ∑
n,x

(
Ên,x × costÊ

n,x,k+

Ên,x∈Xtrans × costÊ,pd
n,x,k × distance(n,nr),x+

R̂area
n,x × costR̂area

n,x,k+

Ŝn,x × costŜ
n,x,k + Pn,x × costP

n,x,k

)
+ ∑

n,x,c,t

(
E+

n,x,c,k,t × cost+n,x,k,t − E−
n,x,c,k,t × cost−n,x,k,t + Eex

n,x,c,k,t × costex
n,x,k,t

)
+ bigM ∑

n,c,t

(
slack+

n,c,t − slack−
n,c,t
)

(3.26)

Where TSF is the timeseries scaling factor T
8760 ×

rateint

1−(1+rateint)−L , to scale the investment costs to
the model time horizon T, and bigM is a value sufficiently large such that slack variables are
only utilised to ensure model feasibility (e.g. 1x1010). Any value of unmet demand or unused
supply implies a model that has not been correctly formulated. Without slack variables, the
linear optimiser would return the model as infeasible with no accompanying indication as to
why, making it difficult for a modeller to address the issue.

3.2.2 Data entry and internal workflow

The user interface for Calliope is designed to be easy to understand. As such, the “human
friendly data serialization standard for all programming languages”, YAML, is used for model
formulation (YAML, 2009). Timeseries data is stored in a comma separated value format and
referred to where necessary in the model formulation. The code block in Figure 3.11 shows
how a CHP technology would be defined in YAML, under the ‘techs’ heading. Other headings
under which the model is formulated are ‘locations’ (for allocating technologies to nodes),
‘links’ (for linking nodes), ‘model’ (for model-wide settings), and ‘run’ (for optimisation
solver settings).

Once the model has been prepared, state-of-the-art Python3 libraries are used to process
the data for sending to the solver. Figure 3.12 shows the internal workflow of Calliope, in
which ruamel.yaml (Neut, 2018), pandas (McKinney, 2010), xarray (Hoyer and Hamman,
2017), and pyomo (Hart et al., 2017) are key to preparing the model. An xarray Dataset is the
format in which the final processed data is stored. It can handle multi-dimensional arrays
and array-specific attributes. The Dataset can be saved in the Network Common Data Format
(NetCDF), which is a file format specific to sharing scientific data. The solver software itself
can be chosen by the modeller, from the full set made available by pyomo. This allows the
same model to be solved seamlessly with different software. Indeed, tests are in place to
ensure that solver results from IBM ILOG CPLEX, Gurobi, GPLK, and CBC are consistent
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techs:
   chp:
       essentials:
           name: "Combined heat and power"
           color: "#E4AB97"
           # `conversion_plus' technologies allow multi-energy conversion
           parent: conversion_plus
           # The primary carrier out is used to apply constraints and costs
           # such as energy capacity and carrier production costs
           primary_carrier_out: electricity
           carrier_in: gas
           carrier_out: electricity
           # heat is given in a separate stream to electricity,
           # so heat and electricity output are linked
           carrier_out_2: heat
       constraints:
           export_carrier: electricity
           energy_cap_max: 1500
           energy_eff: 0.405
           # heat to power ratio = 0.8
           carrier_ratios.carrier_out_2.heat: 0.8
           lifetime: 25
       costs:
           monetary:
               interest_rate: 0.10
               energy_cap: 750
               # .4p/kWh for 4500 operating hours/year
               om_prod: 0.004
               # timeseries export price found in CSV file
               export: file=export_power.csv
           # A carbon cost for consuming gas is included
           carbon:
               om_con: 0.196

Figure 3.11 Example of Calliope YAML model formulation in which a CHP technology is defined.

for two example Calliope models. Commercial solvers offer the best solution times, as seen
previously in Table 3.1, but access to such solvers is often limited to the academic community,
where their use is free.

3.2.3 Timeseries data and clustering

Timeseries data is loaded into the model in discrete time steps, stored in comma-separated
value (CSV) format. Many parameters can vary in time, such as energy demand and intermit-
tent energy supply. Additionally, technology efficiencies and costs/revenues may be given
as static or time-varying values. There is no time horizon nor resolution requirement on
the data, provided all datasets are consistent. A timestamp is associated with a value for a
parameter, with the resolution of that timestamp given by the time difference between it and
the following timestamp in the series. The generalised timeseries input structure allows a
user to:
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Figure 3.12 Internal Calliope workflow, including third party library dependencies.

• define data at any resolution, be it every second, hour, or year;

• provide more data than is necessary, then select a subset of the timeseries over which to
optimise the model;

• include different timestep resolutions within the same timeseries, e.g. three hour resolu-
tion overnight and one hour resolution in the day, and;

• load a highly resolved timeseries, then use Calliope functions to reduce the size of the
time dimension for tractable optimisation.

The size of the time dimension can be reduced by downsampling and clustering. As
discussed in Section 2.1.1, downsampling aggregates timesteps whilst clustering chooses
typical days (TDs) to represent the full timeseries. In either case, outlying days can be masked
prior to timeseries reduction, to ensure information on those days is kept intact. If a user
has access to highly resolved data, algorithmic clustering circumvents the laborious task of
selecting the typical days that lead to the least error in the model. Calliope can algorithmically
cluster using agglomerative hierarchical and k-means methods. In both cases, all timeseries
data is normalised and all data associated with a given date is concatenated to create daily
‘observations’. Each observation has a length equal to the number of timesteps in a day
multiplied by the number of parameters defined as a timeseries. This allows similar days to
be chosen based on the similarity across all timeseries data. Alternatively, a user can select a
subset of timeseries parameters with which to select TDs. For instance, clustering could take
place using only weather data, ignoring energy demand data.

Agglomerative hierarchical clustering begins with every observation in its own cluster.
Clusters move up the hierarchy by forming pairs which minimise a metric, such as the
Euclidean distance. Clustering terminates when either a sufficiently small number of clusters
have been chosen or the distance between forming pairs begins to increase above a given
threshold, either of which is predefined. This approach was formalised for use on timeseries
data by Nahmmacher et al. (2016) and shown to be as effective as k-means clustering for
certain energy system model configurations (Kotzur et al., 2018a; Pfenninger, 2017a).
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K-means clustering randomly assigns k cluster centroids to the data, where k is the
predefined number of desired clusters. Each centroid represents as much data as it is closer
to than surrounding centroids. The positions of centroids are then moved sequentially by a
heuristic algorithm, to further minimise the sum of the distance of the data they represent (the
inertia). The centroids will converge on representing clusters where the Euclidean distance of
all observations from their respective centroids is minimised. But they may become locked
in local minima, causing incorrect clustering. This effect can be mitigated by running the
algorithm several times for the same dataset, each time with a new random allocation of
initial centroids. Clustering a full year of energy system timeseries data to five TDs 1000
times, Pfenninger (2017a) found that k-means was sufficiently stable to be used without
concern regarding local minima.

Unlike in hierarchical clustering, the process of converging on clusters cannot be tracked
with k-means. Indeed, the choice of k, the number of resulting TDs following clustering, may
not satisfactorily encompass all underlying clusters in the data (assuming that there are any).
Rather than select k subjectively, it is possible to quantify the ‘quality’ of resulting clusters
from iteratively greater k. k is found once the quality of clusters reaches a certain threshold.
Many thresholds exist, the best of which is ‘Hartigan’s’ rule (Chiang and Mirkin, 2010).
Hartigan and Hartigan (1975) proposed that the best choice of k can be found by calculating
the difference in total inertia when increasing k to k + 1: HK = ( Wk

Wk+1
− 1)(N − k − 1), where

N is the total number of observations and W is the total inertia. Large decreases in inertia
between k and k + 1 suggest that the ‘right’ number of clusters has not yet been converged
upon. Once HK decreases below 10, the lowest k is considered to be the right number of
clusters.

3.2.4 Visualising results

The interactive plotting library Plotly (Plotly, 2015) is used to visualise results such as the
operation schedule, optimal network routing, and technology capacities (Figure 3.13). Unlike
most plotting libraries used by similar modelling frameworks, the interactivity of the figures
allows a user to select subsets of data to hide, use a dropdown menu to switch between results,
and zoom in on areas of interest in a particularly complex plot. Thus, the dissemination of
data is straightforward, for both seasoned modellers and casual users.

3.2.5 Ongoing development

As any open-source project, Calliope continues to grow. Equally, software improvements
are necessarily slow, to ensure they are well tested, well documented, and usable by a
wide audience. As such, there is an extensive roadmap for Calliope. Indeed, functionality is
introduced in each of the following chapters, beyond that described in this chapter. Additional
functionality is still accessible, via branches of the main repository, but is not yet officially
packaged in the primary release of the software. Ongoing development includes:
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Figure 3.13 Figures produced using Calliope plotting functions. Plots are interactive when viewed as
HTML.

• piecewise linearisation of part-load curves and technology costs, using both special
order set constraint of type 2 (SOS2) and convex bounding sets (CBS) (Chapter 4);

• risk-neutral and risk averse scenario optimisation (Chapters 5 and 6);

• objective functions which allow multiple cost classes to be included at once (Chapter 6),
and;

• out-of-sample testing with differences in the data available in the timestep window
compared to the timestep horizon (Chapter 5).
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3.3 Open source district energy optimisation

Although energy system models are generally moving towards openness, as discussed in
Section 2.2.3, those that focus on the district scale have been lagging behind. Calliope began
as an open-source endeavour and its development to correctly capture the intricacies of
district scale models has arguably realised a more robust open-source model across all scales.
To assess this improvement, six recommendations for successful open-source energy models
are considered (DeCarolis et al., 2012):

1. Make source code publicly accessible.

2. Make model data publicly accessible.

3. Make transparency a design goal.

4. Utilize free software tools.

5. Develop test systems for verification exercises.

6. Work toward interoperability among models.

Calliope meets all six of these recommendations and four have been improved in parallel
with the introduction of district scale operability. Particular improvements which have been
realised are:

1. Data accessibility A greater number of data streams have been necessarily accessed to
develop district-scale models. Once studied, they have been made publicly available,
increasing the model data accessible for direct use with the Calliope framework.

2. Model transparency In both the user interface and internal workflow, transparency of
model code has been reconfigured to be a central focus. Indeed, when the development
team for a piece of software grows, transparency must inevitably improve. The internal
workflow is now more accessible to an individual external to the project, ensuring
broader scrutiny of model practices.

3. Testing The source code test coverage has increased from less than 70% to nearly 95%.
In so doing, Calliope is demonstrably the most well-tested open-source energy system
model available. Tests cover individual functions within the source code as well as
tracking a number of illustrative models from YAML entry to HTML visualisation.
The optimisation process itself can become incredibly opaque, so verifying that each
constraint is applying the expected bounds on decision variables is vital to ensuring
model outputs are trustworthy.

4. Interoperability Model interoperability has improved as a direct consequence of the
refactorisation of Calliope for improved transparency. The NetCDF data structure that
describes a model can be easily shared between modellers and used to connect directly
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to other models. For instance, demand simulation models can inform the demand
‘resource’ values, while outputs can be directly linked to optimal control models. Similar
to the climate science community, Calliope is championing the move towards NetCDF
being a standard data format for energy system models. If achieved, the myriad of
existing energy models will share a common data structure for the cross-validation of
models.



Chapter 4

Exploring the linearisation of ‘reality’

Work in this chapter pertaining to comparisons with a metaheursitic algorithm were undertaken
in collaboration with Shintaro Ikeda (University of Tokyo). Shintaro developed the ϵDE algorithm
and collated the nonlinear technology part-load data. Parts of this chapter have been published
as:

B. Pickering et al. (2016). ‘Comparison of Metaheuristic and Linear Programming Models for
the Purpose of Optimising Building Energy Supply Operation Schedule’. In: 12th REHVA World
Congress. Vol. 6. Aalborg, Denmark: Aalborg University, Department of Civil Engineering. ISBN:
87-91606-31-4. URL: http://vbn.aau.dk/files/233775414/paper_529.pdf (visited on 11/08/2016)

B. Pickering and R. Choudhary (July 2017). ‘Applying Piecewise Linear Characteristic Curves

in District Energy Optimisation’. In: Proceedings of the 30th International Conference on Efficiency,

Cost, Optimisation, Simulation and Environmental Impact of Energy Systems. San Diego, USA, pp. 1080–

1092

Technology characteristics are inherently nonlinear, some more so than others. When mod-
elling an energy system as a set of linear constraints, the reality of technology operation is
therefore lost. Metaheuristic algorithms are well placed to handle nonlinearities in a model.
However, there are limitations in their ability to represent large district energy systems, par-
ticularly if getting close to a global optimum is desirable. Indeed, most district energy system
studies are chosen to fit within a linearised representation of reality (Sameti and Haghighat,
2017). Two prominent areas in which linearisation is undertaken are 1) technology operating
variability due to temperature fluctuations and 2) operating efficiency at part-load. Nonlinear
part-load operation has been observed in empirical studies (Best et al., 2015) and can be
the recommended representation of technologies given by a government body (Ikeda and
Ooka, 2016). In some cases, the expected deviation between the ‘realistic’1 and linearised
representation of a technology leads to certain characteristics or entire technologies being
removed from consideration in a study (Jennings et al., 2014; Steen et al., 2015).

Aware of nonlinearities, but not wanting to ignore them, some studies have begun
considering piecewise linearisation (Bischi et al., 2014; Evins et al., 2014; Wakui and Yokoyama,
2014). The nonlinear partial load curve of technologies can be separated into linear sections,

1No computational representation of technology operation will truly capture its realistic characteristics. In
this thesis ‘realistic’ is referred to as the best-case representation of technologies.

http://vbn.aau.dk/files/233775414/paper_529.pdf
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with each section being linear. The greater the number of sections, the closer the representation
of nonlinearity. Bischi et al. (2014) showed that piecewise linearisation increases computation
time, but there is no change in result if using more than 10 pieces to describe a curve.
However, Bischi et al. (2014) did not examine how well piecewise curves converge on the
‘real’ nonlinear representation. In the power electronics sector, del Valle et al. (2009) compared
enhanced particle swarm optimisation (a metaheuristic method) to mixed integer linear
programming (MILP) (referred to as the branch & bound method). The results indicated
that particle swarm optimisation was better than branch & bound optimisation in both time
to solution and objective function value (OFV). However, the particle swarm optimisation
inputs were linearised for comparability with the MILP model. Indeed, direct comparison
between nonlinear models and their linearised counterparts is not generally undertaken,
certainly not in energy system modelling.

In this chapter the impact of linearisation on energy systems is tested. To do so, nonlinear
characteristic curves of various technologies are taken from Japanese government guidelines
(The Society of Heating Air-Conditioning and Sanitary Engineers of Japan (SHASE), 2003).
The curves describe the energy consumption of technologies at part-load rates, i.e. when
a technology is not operating at full capacity. A metaheuristic model was used to provide
a nonlinear benchmark for an energy system, against which various linear models were
tested. In Section 4.1 piecewise linearisation methods are described before applying them
to two case studies, one in Japan and the other in the UK (both detailed in Section 4.2).
The impact of linearisation on objective function value, actual operation cost (as simulated
ex-post), and investment/dispatch decisions is given in Section 4.3.1. Exploring piecewise
linearisation further, Section 4.3.2 looks at how a pre-optimisation step could be used to
reduce computational effort in the subsequent MILP models without loss of nonlinear curve
fitting.

4.1 Linearising part-load curves

When using a nominal value for a technology characteristic, the constraint generated with
respect to that value is of the form y = mx. For instance, a coefficient of performance (COP)
of 4 for a heat pump dictates that its heat output (y) is 4 (m) times the electricity input (x).
The linear relationship between the decision variables y and x allows us to undertake linear
programming. When a technology characteristic is to be described by anything more complex
than a nominal value, we enter into nonlinear constraints. Although linear when x assumes
a value greater than zero, Figure 4.1a displays a constraint with a clear discontinuity at
x = 0, where y is simultaneously 0 and C. In linear programming, binary decision variables
can be used to overcome this discontinuity. The binary constraint creates a switch for the
constraint, such that y = 0 if x = 0 and y = mx + C otherwise. The curvature of the
remaining characteristic curves in Figure 4.1 precludes the use of a single binary constraint.
When faced with characteristic curves which are not straight lines in MILP, they must be
described by a set of straight lines connected by breakpoints, i.e. piecewise linearised (Figure
4.1c). Breakpoints are positioned at the intersection of two straight lines along piecewise
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Figure 4.1 Example of nonlinear curves, including a piecewise representation.

curves. They are positioned directly on the nonlinear curve, thus accurately represent the
nonlinear curve at that point. Between breakpoints, the straight lines will, in most cases,
deviate from the nonlinear curve. Two approaches can be taken in piecewise linearisation:
convex bounding sets (CBS) and special order set constraint of type 2 (SOS2). Models with
piecewise representation of a technology use the SOS2 methodology (Bischi et al., 2014; Milan
et al., 2015; Wakui et al., 2014). However, the number of pieces used varies between models.
Bischi et al. (2014) found that up to ten pieces shows minimal increased computational time
compared to the complete linear case, which is sufficient to describe most of the nonlinear
curves encountered in energy systems.

Convex bounding sets

It would also be valid to impose the constraint y ≤ mx instead of y = mx on the
aforementioned example of a heat pump COP as it is suboptimal for y to sit anywhere other
than on the line described by mx. If producing less heat, there is no cost-optimal reason to
continue consuming more electricity than given by y/m. Yet, the solution space for variable
y has now expanded from being on the line y = mx to include everything below it, i.e.
the shaded region in Figure 4.2a. If a second linear constraint is added, now described by
y ≤ mx + C, the shaded region available to y can be changed, still with the knowledge that it
will not sit anywhere but on the line now described by two curves (Figure 4.2b). This premise
of defining a convex hull solution space by several constraints is how a linear optimisation
problem is constructed, albeit in multidimensional space, as already detailed in Section 3.1.
By continuing to add constraints of the form y ≤ mx + C, the description of any convex
characteristic curve can be converged upon. If the example heat pump has a heat output to
power input relationship as given in Figure 4.2c, CBS can be used to estimate the curve. Of
course, only with an infinitely large set of constraints can a smooth convex curve truly be
described. Additionally, there are two strict requirements for this method to function, both
related to the inequality used in each of the set of constraints. First, the nonlinear constraint
must have a strictly increasing/decreasing gradient. Figure 4.2d shows what will happen
if this is not the case. Certain lines describing the piecewise curve encroach on the search
space where they should not. The result is an upper bound of the search space that does
not resemble the original nonlinear curve. Second, it must be suboptimal for the decision
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variable y to be anywhere other than on the line described by the upper bound of the convex
hull. If y was instead the cost of consuming electricity, then it would actually be optimal for
it to be always zero, which is within the search space. Thus, decision variables which are
optimal at their upper bound can only be described by a curve that has a strictly decreasing
gradient. Conversely, decision variables which are optimal at their lower bound can only
be described by a curve that has a strictly increasing gradient. CBS are clearly limited in
use, but they allow a model to remain purely linear, or limit the constraint to requiring only
one binary constraint (if the nonlinear curve does not reach the origin). This method can
also be extended easily to three dimensional surfaces, where the constraints are of the form
f (x, y) = my + Cx, with f (x, y), y and x all being decision variables.

Special order set constraint of type 2

Where convex bounding sets fail to describe a particular nonlinear curve, it is possible to
use SOS2 instead. First introduced by Beale and Tomlin (1970), SOS2 are “a set of consecutive
variables in which not more than two adjacent members may be non-zero in a feasible
solution". Consider a curve similar to that given in Figure 4.2d, now described as the
function f (x) in Figure 4.3a. Points P1, . . . , PK are assigned along the curve, with coordinates
(x̂k, f (x̂k)), k = 1, . . . , K. Any point x in the closed interval [x̂k, x̂k+1] may be written as

x = αk x̂k + αk+1x̂k+1 where αk + αk+1 = 1 and x̂k, x̂k+1 ≥ 0. (4.1)

As f (x) is linear in the interval, it can be written as

f (x) = αk f (x̂k) + αk+1 f (x̂k+1). (4.2)

which leads to the representation of f(x) using a set of weighting variables (known as the
special ordered set type two variables), αk, k = 1, . . . , K, by the equality

f (x) = α1 f (x̂1) + α2 f (x̂2) + . . . + αK f (x̂K) (4.3)

where α1x̂1 + α2x̂2 + . . . + αK x̂K − x = 0, y ≥ 0 and α1 + α2 + . . . + αK = 1, k = 1, . . . , K.
With the additional condition that not more than two adjacent variables can be non-zero any
one time, it is possible to represent each point on the piecewise curve given in 4.3a within a
MILP model. This does mean that we require a reasonable number of binary variables for
every characteristic curve, making the representation more complex than with CBS, which
can be described completely in a linear programming (LP) model. Thus, solution times can
be expected to be greater when using SOS2, even up to the point of causing intractability.
As with CBS, nonlinear curves linking more than two decision variables can be piecewise
linearised using special ordered sets. The most common approach is to have n breakpoints
x1, . . . , xn on the x axis and m sampling points y1, . . . , ym on the y axis (D’Ambrosio et al.,
2010). f (x, y) is evaluated for each breakpoint. Any point (x̂, ŷ) can be evaluated within
the rectangle bounded by (xi, yj), (xi+1, yj), (xi, yj+1), and (xi+1, yj+1), which contains two
triangles created by its diagonal [(xi, yj), (xi+1, yj+1)] (Figure 4.3b). By convex combination
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Figure 4.2 Application of CBS to describe a nonlinear curve. (a) shows a single bounding line, extended
to two bounding lines in (b). In (c) the bounding set is large enough to describe the nonlinear curve
well. Due to the gradient not strictly increasing/decreasing, (d) shows ineffectiveness of CBS when
applied to a more complex curve.
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of the function, values evaluated at the vertices of the triangle containing (x̂, ŷ), f (x̂, ŷ) can
be ascertained.

f(x)

x̂1

P1

P2

P3

P4

P5

Pk-2

Pk-1
Pk

Nonlinear curve Piecewise curve

x̂2 x̂3 x̂4 x̂5 x̂k-2 x̂k-1 x̂k

(a) Graphical representation of SOS2 piecewise
linearisation. f (x) is the sum of weighted values
αi f (xi) and αi+1 f (xi+1), with all other values of α
being zero.
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f(xi+1,yj+1)

 

(b) Graphical representation of 3D piecewise lin-
earisation. f (x̂, ŷ) is the sum of weighted decision
variables λ and µ applied to f (xi, yj), f (xi+1, yj+1)
and f (xi+1, yj).

Figure 4.3 Graphical representation of piecewise linearisation using SOS2.

Measuring Impact
Ex-ante linearisation error Between breakpoints on a piecewise curve, the straight line will
usually deviate from the nonlinear curve. By measuring this deviation along the length of
the nonlinear curve, we can assess the linearisation error of the curves ex-ante. The goodness-
of-fit of two curves can be compared using root-mean-square error (RMSE), which discretises
the curves (in this case into 1000 points) and measures the error at each point using the
equation:

RMSE =

√√√√(∑p∈P(y2
1p
− y2

2p
)

length(p)

)
(4.4)

where points p are the discretised curve points in the set P, y1 and y2 are the curve y-axis
values for the nonlinear and linear curve, respectively. Ex-ante linearisation error can be
assessed for single line representations of the curve as well as piecewise curves. In the case of
piecewise curves, a set of breakpoints will have at least one set of positions which minimises
the ex-ante linearisation error. Although we could make a good guess at optimal placement,
the process of locating breakpoint sets optimally can be simplified by automation. Setting
the objective as the piecewise curve that has the least error relative to the nonlinear curve
allows us to conduct computational optimisation in this preprocessing step. Additionally, the
constraint that the gradient must be strictly increasing or decreasing can be applied, creating
piecewise curves which meet the requirements set out in section 4.1.

Breakpoint allocation can be undertaken during model pre-processing, by parameter
optimisation. Previous studies have used heuristic algorithms to piecewise linearise (Horner
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and Beauchamp, 1996; Siriruk, 2012). In this study, the heuristic sequential least squares
programming (SLSQP) method (Kraft et al., 1988) has been used with the objective function to
minimise the RMSE between each nonlinear curve and its piecewise counterpart. As heuristic
methods do not necessarily reach a global optimum, the SLSQP optimisation must be run
multiple times to improve the chances of a useful result. In each run, the breakpoint positions
are randomly placed on the curve at the start of the optimisation.

Ex-post linearisation error An optimised energy system model will provide a decision
maker with a recommended investment portfolio and operation schedule. If the model is
based on linearised inputs, there will be a difference in ‘real’ operation compared to that given
by the model. Depending on the shape of the curve being linearised, the difference may be
negative or positive. A positive impact is caused by a pessimistic linearisation: the piecewise
curve leads to an average of greater consumption than its nonlinear counterpart. Conversely,
a negative impact is caused by an optimistic linearisation. It is possible to undertake ex-post
analysis on the optimal solution to measure the impact of linearisation, be it positive or
negative. To do so, decision variables (technology capacity, hourly dispatch, etc.) are fixed
to those which produce the minimum OFV. Then, a simulation is run with the nonlinear
technology characteristics in place. The linearisation error is thus the additional system cost
when running the simulation when compared to the OFV.

Generally, when considering part-load consumption curves, the energy balance during
the simulation is undisturbed; only the magnitude of consumed resource (electricity, gas, etc.)
will change. However, in a multi-energy system there are often intermediate steps, where the
output of one technology acts as the input to another. A heat recovery absorption refrigerator
(HRAR) is an example of this, as it can consume waste heat from a combined heat and
power plant (CHP) to produce cooling. In such cases, a discrepancy in the magnitude of heat
required by the HRAR will impact the quantity of heat the CHP must produce. Similarly, if the
CHP has a part-load heat-to-power ratio (HTP) then at any given output the amount of heat
it produces per unit of electricity will vary. If the linearisation is optimistic, additional energy
will need to be sought from somewhere during the simulation. The most straightforward
way of meeting the energy deficit is to consider a ‘slack’ technology. For example, in both
the aforementioned cases an auxiliary boiler could be assumed to be available to produce
heat from gas if required. If there is too much energy produced (i.e. the linearisation was
pessimistic) then we assume it is dissipated to the atmosphere by some zero-cost method.

4.2 Model configuration

4.2.1 Technologies

The two case studies considered in this chapter share the same set of technologies, detailed
in Table 4.1. Many of these technologies have been chosen on the existence of nonlinear
curves by which to describe their part-load characteristics, as recommended for use by The
Society of Heating Air-Conditioning and Sanitary Engineers of Japan (SHASE) (2003). Shown
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in Figure 4.4, part-load curves are available for an air source heat pump (AHP), electric
chiller (ECh), HRAR, absorption refrigerator (AR), CHP (including HTP), and natural gas
boiler (NGB). Pumps for all technologies that handle fluid flow also operate nonlinearly, an
example of which is given by the cold water StoreT (StoreT-C) pump in Figure 4.4f. Many
of the curves exhibit the noticeable trait of a discontinuity at low load rate which matches
the ‘minimum’ load rate of the technologies, under which manufacturers recommend that
the technologies do not operate. Below minimum load rate, inefficiencies in the system that
are not load-dependent are more pronounced in their impact on energy consumption. Some
technologies, such as the NGB, AR, and HRAR have an almost linear relationship above
minimum load rate. Conversely, Figure 4.4a shows that the ECh acts nonlinearly across its
entire operating range. For the CHP, there is a reasonable disparity between the realistic
operation and rated efficiency, particularly when considering the heat to power ratio (Figure
4.4h).

Additional technologies are included beyond those with nonlinear part-load curves, to
test the complexities of multi-energy systems. Solar photovoltaic panels (PVs) and solar
thermal panels (STs) allow intermittent, renewable solar energy to be consumed. They do also
operate nonlinearly in their conversion of solar energy into electricity and heat, respectively.
However, this nonlinearity has been pre-computed such that the ‘available’ energy from
either technology in each time interval is the electricity or heat output. Pre-computation of PV
available energy was undertaken by Pfenninger and Staffell (2016) and acquired for this study
from https://renewables.ninja (Pfenninger and Staffell, 2016). Using MERRA reanalysis data,
the heat output equation proposed by Brunold et al. (1994) was used to pre-compute the ST
heat output.

electrical battery storage (StoreE) adds an electrical temporal buffer to mirror the thermal
energy storage (StoreT). None of the storage technologies are considered to operate non-
linearly. Maximum flow rates for charge and discharge of the StoreT technologies have
been limited to ensure that mixing effects are avoided. Two technologies are unique to their
respective case studies: the AR is used only in case study 1, while the ST is only used in case
study 2. Finally, not all information pertaining to each technology in Table 4.1 is used in every
model run. Explicit exclusions are highlighted when detailing the run configuration.

4.2.2 Case studies

Case study 1: Japanese hotel

This study investigated meeting the energy load of a representative Japanese hotel. The
hotel has 20,000m2 total floor space, with demand for electricity, hot water, and space cooling
(Figure 4.5) over a 24-hour summer day. As there is only one building considered in this
study, there are no distribution networks. However, this allows for greater detail in the
internal energy distribution, as given in Figure 4.6. Figure 4.5 shows gas and electricity prices.
Electricity export, available for the PV and StoreE technologies, produces a revenue for the
system. The electricity sale price is static throughout the day, while the purchase price varies
by dynamic pricing. The variable pricing is inferred from the building electricity demand

https://renewables.ninja
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Figure 4.4 Nonlinear part-load curves for various energy technologies. All figures show energy
consumption, except 4.4h which shows the CHP heat output per unit electricity output.
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Table 4.1 Supply technologies and their consumption/production energy. E = electricity, G = gas, S =
solar radiation, C = cooling, H = heating.

Technology AHP ECh HRAR AR CHPa NGB PV ST StoreE StoreT-H StoreT-C

Consumption E E G/H G G G S S E H C

Production C C C C E, H H E H E H C

Rated
capacity

550kW/
500kWb 2500kW 1000kW 1500kW 352kWe

300kWth 750kW 1.2kW/m2 N/A 1200kWh 10000kWh 500kWh

Rated
efficiency

358% 603% 132% 125% 40.5%
34.5% 80.0% 85%c 100%c 90% 100% 100%

Minimum
load rate

0.2 0.45 0.30 0.25 0.2 0.2 0 0 0 0 0

Rated
charge/

discharge

N/A 360kW 3000kW 100kW

a CHP produces both electricity and heat.
b Two AHPs were used in this study, with differing maximum capacity.
c Solar energy conversion efficiency has already been accounted for in the timeseries resource data for PV and ST. For PV, 0.85 refers to inverter efficiency.

profile alongside a knowledge of the size and electricity price of the network power stations,
as formulated by Ikeda and Ooka (2016). To create this case study, data on energy demand,
technology characteristic curves, and costs have been brought together from multiple sources.
Energy demand specific to a hotel was taken from the The Society of Heating Air-Conditioning
and Sanitary Engineers of Japan (SHASE) (2003) database and Japanese Meteorological
Agency data on ambient conditions was used for energy consumption modelling of cooling
technologies. This case study utilises the rated capacity of technologies given in Table 4.1 as
it is only used for optimisation of the operation schedule. A full description of this case study,
including the optimisation problem size, is given in Section B.1.
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Figure 4.5 Energy demand and fuel pricing for case study 1, according to The Society of Heating
Air-Conditioning and Sanitary Engineers of Japan (SHASE) (2003) and Ikeda and Ooka (2016).

Case study 2: UK district
Extending the single building system of case study 1, a district is considered in this case

study. A hotel is a useful study building, due to its non-negligible requirement for electricity,
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heating, and cooling. But, unlike a district system, it does not require the consideration of
energy distribution. This district is illustrative and consists of 10 domestic properties, one
large hotel, one large office, and one power plant (Figure 4.7a). Different technologies are
available in each building, depending on building demand and category. For instance, if
a CHP is chosen, it must be situated in the power plant or in the hotel (as a micro CHP
(µCHP)). No cooling technologies are considered in the domestic properties as there is only
electricity and heat demand at those nodes. Table 4.2 gives further information on attributes
of each property type. Distribution networks exist for low voltage electricity, gas, and heat.
For tractability, the district is modelled in an aggregated form, as shown in Figure 4.7b.
Commercial and domestic properties are aggregated into separate nodes in the district, with
the buildings within each category contributing to its node. The district is located in the
South-East of England, UK. However, due to limited data availability, U.S. Department of
Energy representative building demand (EERE, 2013) informed hourly heat, cooling, and
electricity demand of district buildings. Seattle, WA data was chosen due to climate similarity
with London, UK. Demand data for an entire year was acquired, but was aggregated to
four typical days (96 timesteps) when comparing piecewise to other linearised consumption
curves. Two separate weeks (winter & summer, 168 timesteps each) were modelled when
analysing equidistant against optimised breakpoint allocation.

Unlike case study 1, capacity and timeseries decision variables are considered in this
district. Timeseries costs are those incurred by the consumption of national grid electricity
(GridE) (0.095 GBP/kWh) and national grid natural gas (GridNG) (0.025 GBP/kWh). Revenue
is available by the export of electricity from both the PV and CHP technologies. PV revenue is
based on the feed-in tariff for domestic/commercial properties: 0.1203 GBP/kWh produced
and 0.0491 GBP/kWh exported, respectively (ofgem, 2016). The CHP can export electricity at
a price equal to 80% of the wholesale electricity price at any given time interval, using hourly
wholesale prices for 2015, courtesy of ELEXON (https://www.elexon.co.uk/). Investment
costs for each technology are given in Table 4.3. Most costs have been calculated based on
values given in the SPON’S mechanical and electrical services price book (AECOM, 2015).
These costs include a fixed installation cost and a cost that increases linearly with technology
capacity. StoreT, StoreE, PV, and ST costs have been aggregated from online suppliers. A full
description of this case study, including the optimisation problem size, is given in Section B.2.

Table 4.2 Case study 2 building characteristics.

Dwelling Hotel Office Plant

Annual energy demand (MWh)

Electricity 7.2 1595.5 481.3 0

Heat 17.5 1641.6 86.5 0

Cooling 0.0 1757.9 99.1 0

Available roof area (m2) 130 1300 900 0

Available technologies NGB, PV, ST,
StoreE, StoreT

µCHP, NGB, PV,
HRAR, AHP, ECh,
ST, StoreE, StoreT

NGB, PV, ST, HRAR,
AHP, ECh, StoreE, StoreT CHP, GridE

https://www.elexon.co.uk/
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Figure 4.7 Graphical representation of case study 2 district network.

Table 4.3 Capacity costs (GBP) of supply technologies in case study 2.

Technology AHP ECh HRAR CHP NGB PV ST StoreE StoreT-H StoreT-C

Investment cost 2,517 +
158/kW 111/kW 52,497 +

79/kW
46,480 +
703/kW

2,024 +
35/kW

1,500 +
1,000/kW 1200/kW 1,667 +

350/kWh
527 +
66/kWh

527 +
303/kWh

4.2.3 Tests

In exploring the requirement for, and capabilities of linearisation, the case studies were
used for two sets of tests. Various runs were undertaken for each test, as detailed in Table
4.4. The nonlinear curves are progressively linearised until they reach rated efficiency. In
between, they are described by piecewise curves and y-intercept efficiency. This progression
is illustrated in Figure 4.8. The implementation of y-intercept efficiency is one such that the
efficiency at the minimum load of a technology is equal to the efficiency described by the
nonlinear curve at that point. As such, technologies were not allowed to operate below their
minimum load in these runs. There are a few instances where there is no cross-over between
methods, such that a direct comparison cannot be made. Nevertheless, the impact of these
methods relative to straight line efficiency and full nonlinear part-load curves allows for
viable indirect comparison.

Breakpoint allocation can be purely subjective, involving choosing locations along the
curve to define the minimum load rate; load rate at rated efficiency; and maximum load rate,
with remaining points placed to ensure reasonable curve following. Using the second case
study, methods of positioning the breakpoints along the curve, equidistant and optimised,
and increasing the numbers of breakpoints are tested. Equidistant breakpoints are placed
at regular intervals along the x-axis (load rate) of the curves. Optimised breakpoints are
positioned using the method introduced in Section 4.1.
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Table 4.4 Run configuration options for comparing nonlinear curves to their SLE and piecewise
linearised counterparts. ‘x’ refers to the particular curve representation method available in each test.

Representation method

Case study TestSLE Piecewise

Rated y-intercept CBS SOS2

Nonlinear vs piecewise x x 1 1

Nonlinear vs SLE x x 1 1

Piecewise vs SLE (1) x x 1 1

Piecewise vs SLE (2) x x x 2 1

Piecewise varying breakpoints x x 2 2
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Figure 4.8 Progression of curve linearisation used in tests, from nonlinear to straight line.

Nonlinear algorithm
In the first test, the impact of piecewise linearisation of part-load curves is explored and

compared directly to their nonlinear counterparts. To this end, a nonlinear algorithm is
required. As discussed in Section 2.2.1, metaheuristic algorithms are commonly used in
energy system optimisation to handle nonlinearities. However, such algorithms are only
used on small problems, due to the inefficiencies exhibited in trial and error optimisation.
Ordinarily speaking, metaheuristic algorithms do not consider constraints, although almost
all actual systems have many constraints. Thus, a method that can handle constraints is
necessary. Epsilon constraint differential evolution (ϵDE), developed by Takahama and Sakai
(2010) and Mallipeddi et al. (2012), is one such method which exhibits efficiency improvements
compared to other constraint handling methods. The ϵDE algorithm used in this study is
that introduced by Ikeda and Ooka (2016) and contains seven parts. It is run in MATLAB
(The Mathworks, Inc., 2015) as follows:

1. scatter 80 individuals into a search domain using random numbers;

2. evaluate the objective function of each individual and set an initial value of ϵ;

3. consider individuals only from the top 20% of the population, ranked by ϵ level com-
parison;

4. create a new solution at a constant mutation rate of 0.5, mixing three individuals in
accordance with the original differential evolution algorithm;

5. evaluate the constraint violation that indicates how far the new individual is from a
feasible domain;
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6. compare the new individual with the old in terms of the objective function or ϵ, the
better of the two becomes the old individual in the next iteration;

7. finally, return to 4, repeating generations up to 5000 times with cross-over rate decreas-
ing exponentially from 0.8 and ϵ having to reach zero at 2000 generations.

The most favourable objective function value from running the algorithm 10 times is taken
as the optimal solution. Metaheuristic algorithms are often time consuming, particularly
when solutions close to the global optimum are sought. The first case study is a building-
level energy system to ensure timely convergence of the ϵDE model. The small spatial and
temporal size of the problem allows technology nonlinear characteristic curves and the impact
of temperature dependence on those curves to be examined. It also allows 5-breakpoint SOS2
to be used to describe the piecewise linearised curves.

Temperature dependence The ECh, AR and HRAR utilise a cooling tower to remove heat
to the atmosphere. The performance of the cooling tower varies depending on external
temperature, which can then be translated to lower average cooling water temperature (Tcw).
Lower Tcw leads to a lower average temperature of the respective technology refrigeration
cycle, increasing its efficiency. This feedback loop can be modelled by metaheuristic al-
gorithms, as temperature can be tracked within the primary optimisation. It is not feasible to
emulate this behaviour in MILP, therefore the ϵDE model must be simplified to not account
for Tcw changes. The effect of omission on the final objective function result will be analysed.

Software and Hardware
When comparing solution times, it is important to ensure that there is consistency across

both software and hardware in tests. Case study 1 tests were run on a laptop computer with
64-bit Windows 8.1 Pro operating system with 3.40 GHz i7-4700 processor and 32 GB RAM.
Case study 2 tests were run on a 64-bit Windows 7 operating system with 2.50 GHz Intel
Xeon E5-2680 v3 processor and 64GB RAM. All MILP models were optimised using IBM
ILOG CPLEX (IBM Corp., 2016), with a variation of the modelling framework DENO (Omu
et al., 2013; Omu et al., 2015) used in case study 1 and the Calliope framework (see Section 3.2)
used in case study 2.

4.3 Results

4.3.1 Influence of linearising technology consumption curves

Objective function value
In case study 1, Table 4.5 shows that the OFV range is bounded by the simplest (y-intercept

efficiency) and most complex (ϵDE with ∆Tcw) curve representation. The difference of 3% is
small and initially the piecewise case provides a better solution than using ϵDE. This clearly
indicates that ϵDE did not reach a global optimum, as piecewise characteristic curves are
more pessimistic than the nonlinear curves in every case. That is, the optimum that could
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be achieved by ϵDE is lower than in the MILP models, for the same operation schedule.
The ϵDE result is brought marginally lower than the piecewise one by updating the method
given in Section 4.2.3 to initialise with MILP piecewise results, instead of randomly scattering
individuals. By doing this, it was possible to obtain a marginally lower operation cost, which
just beats the piecewise result.

When accounting for linearisation error (LE) ex-post, the piecewise result was 1,500
JPY lower than given by its OFV. Better yet, the operation cost when using y-intercept
efficiency decreased by 5,400 JPY ex-post. Thus, the operation cost based on linear models is
lower than that achieved using ϵDE, even when initialising it with the piecewise results. A
greater improvement can be made by allowing temperature tracking in ϵDE, as the cooling
technologies operate to capitalise on periods of high COP. But, given the inability of ϵDE to
find a global optimum without varying ∆Tcw, it is likely there is an even lower cost operating
schedule that has yet to be found.

Table 4.5 Objective function value and optimisation solution time for case study 1, comparing linear,
piecewise linear, and nonlinear technology representation. LE is calculated ex-post.

Run
MILP ϵDE

y-intercept efficiency Piecewise linear
Random

initialisation

MILP

initialisation

Random

initialisation

inc. ∆Tcw

OFV (JPY) 710,542 705,292 706,013 705,050 686,527

OFV + LE 705,150 703,895 706,013 705,050 686,527

Solution time (s) 0.08 1.64 276 270 295

For the district system in case study 2, Figure 4.6 shows that the result is varied. If using
the y-intercept efficiency, as used in case study 1, the OFV is slightly lower than piecewise.
However, after accounting for LE ex-post, the cost is actually higher. If using piecewise
linearisation, the ex-post error is low: actual operation will cost 0.1% less than the OFV. Once
LE has been applied to rated efficiency runs, the operation cost increases by 5%, becoming
the most expensive option.

Table 4.6 Objective function value and optimisation solution time for case study 2, comparing linear
and piecewise linear technology representation. LE is calculated ex-post. When modelling piecewise
curves, three breakpoints were used.

Run Rated efficiency y-intercept efficiency Piecewise linear

OFV (GBP) 227,332 232,801 233,173

OFV + LE 239,352 232,630 231,714

Solution time (s) 186 401 598
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Solution time
By increasing model complexity, time to solution increases. There is a two order of mag-

nitude time saving when using y-intercept efficiency compared to piecewise representation
(SOS2) and a further two orders of magnitude compared to the ϵDE solution time. The ϵDE
model operation varies little between each run type, as the number of initial individuals and
generations to run within the algorithm are fixed across all runs. The 7% increase in time
for Tcw consideration shows the computational effort within MATLAB to calculate updated
temperatures at each generation. Compared to SOS2, y-intercept efficiency is fast. Compared
to CBS, y-intercept efficiency is (slightly) slow. Case study 2 shows that CBS is a drastic
improvement on SOS2 as its solution time is of the same order of magnitude as y-intercept
efficiency. The fastest solution time is realised when using rated efficiency, owing to the
model requiring the least number of binary variables.

Capacity and dispatch
Across the 24 hours of operation, the energy dispatch can be readily compared in case

study 1. Only minor differences exist between the models, but comparison of the ϵDE and
MILP results shows different functions for the hot water storage tank (Figure 4.9). In the ϵDE
local optimal case, the early hours are used to charge the heat storage to 600kWh, which is
then discharged beginning at 6am. Storage is more sporadic in the MILP case, never charging
the heat storage to more than 300kWh, and more often changing between charge/discharge
from hour to hour.

There is no discernible difference in operation between the two linear representations
of case study 1. In case study 2, Figure 4.10 shows clear differences in both technology
investment and in operation. First, there is far more dependence on the ECh when there is no
knowledge of its part-load operation (i.e. using rated efficiency) as it can be used liberally
at part-load without any negative impact. Full load operation of a smaller capacity ECh is
used in both the y-intercept and piecewise schedules. Having more technologies with lower
capacities either at full load or zero load is particularly prevalent in the piecewise case, which
is the only solution to invest in AHP. Capacity of heating and storage technologies is uniform
across each of the runs. Although there are differences in the operation of the NGB and CHP,
there is no clearly discernible trend with greater simplicity of the linearisation method.

4.3.2 Breakpoint allocation

Ex-ante linearisation error
Figure 4.11 shows the difference in breakpoint positioning between the optimised and

equidistant allocation methods. Equidistant breakpoints deviate around the minimum load,
which is avoided when optimising the breakpoints. Also, with an increasing number of
breakpoints, the ex-ante LE reduces much more quickly with optimised piecewise curves
than with equidistant ones. Realistically, there is only a small variation between the two
sets of curves, but the advantage of the optimised breakpoint allocation is that no prior
knowledge of the curve is required. The optimisation process took only 17.1 seconds to
optimise 108 piecewise curves describing characteristics of eight technologies (27 nonlinear
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Figure 4.9 Comparison of optimal operation schedules for meeting hot water demand in case study 1.
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Figure 4.10 Comparison of optimal capacity and dispatch between different part-load characteristic
linearisation methods in case study 2. When modelling piecewise curves, three breakpoints were used.
Dispatch shows a histogram of the number of hours a technology operates at a given load rate, with
zero and full load given at the extreme ends of the histograms.

curves, three to six breakpoints). This optimisation speed would not differ greatly if more
complex curves were applied, but equidistant breakpoints may become more erroneous.
Additionally, the CHP part-load curves (Figures 4.11e and 4.11f) show the advantage of an
optimisation technique to position breakpoints: a constraint to ensure CBS can be enforced.
The additional error in ensuring that the piecewise curve has a strictly increasing/decreasing
gradient is apparent at a higher number of breakpoints. But, in all but one instance, the RMSE
is still lower than equidistant breakpoint allocation, with the added benefit of knowing that
CBS can be used.

Objective function value

Application of piecewise curves increases the objective function value by as much as 5.2%.
Table 4.7 shows that differences in objective function value are small when increasing the
number of piecewise breakpoints, with optimised curve averages of £4036 +1%/-0.5% in
winter and -£2394 +0%/-0.6% in summer. The summer negative cost represents the ability
for the system to gain more revenue from subsidies and export than it spends on investment
and operation in that period. There are no equidistant solutions beyond three breakpoints
due to model infeasibility. It is not possible to place constraints on breakpoint location when
placing equidistantly. Thus, the strictly increasing/decreasing gradient requirement for being
bound by constraints cannot be met for CHP HTP and gas consumption. Although the rated
efficiency objective function value is lower than for piecewise models, the ‘real’ system costs
end up being higher. Ex-post LE is 12% in both seasonal weeks when using rated efficiency,
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Figure 4.11 Impact of optimised and equidistant piecewise curves on ex-ante LE of part-load curves of
technologies considered in case study 2. 5-breakpoint piecewise and rated efficiency curves shown for
comparison against nonlinear curve. All figures have energy consumption on the y-axis, except 4.11f
which shows the CHP heat output per unit electricity output. The ‘optimised for CBS’ results for the
CHP refer to the requirement that the piecewise curve has a strictly increasing/decreasing gradient.
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Figure 4.11 (cont.) Impact of optimised and equidistant piecewise curves on ex-ante LE of part-load
curves of technologies considered in case study 2. 5-breakpoint piecewise and rated efficiency curves
shown for comparison against nonlinear curve. All figures have energy consumption on the y-axis,
except 4.11f which shows the CHP heat output per unit electricity output. The ‘optimised for CBS’ res-
ults for the CHP refer to the requirement that the piecewise curve has a strictly increasing/decreasing
gradient.
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decreasing to less than 1% when including piecewise curves. In summer, this effect is most
pronounced, where LE reduces to zero at six breakpoints.

Table 4.7 OFV (in GBP) for all breakpoint comparison run configurations, including the quantification
of ex-post LE. O = optimised, E = equidistant, RE = rated efficiency.

Breakpoints 2 3 4 5 6

Linearisation RE O E O E O E O E

Winter

OFV 3,989 4,036 4,048 4,074 Fail 4,019 Fail 4,016 Fail

+LE +465 +23 +12 +40 N/A +32 N/A +32 N/A

Summer

OFV -2,507 -2,380 -2,377 -2,398 Fail -2,398 Fail -2,401 Fail

+LE +294 -17 -28 -2 N/A -1 N/A 0 N/A

Solution time
While the accuracy of the objective function value is improved, piecewise linearised cases

take much longer to solve (Table 4.8). This is more the case in the summer week, which peaks
at 17,521 seconds (three breakpoints, equidistant), two orders of magnitude greater than the
rated efficiency run. Even at the least number of breakpoints, the solution time is 2.5x and
14.9x longer than the rated efficiency run in winter and summer, respectively.

There is generally an increase in solution time with an increased number of breakpoints,
the only anomaly being the drastic decrease in model solution time between having five and
six breakpoints in summer. Here, the optimisation is completed in less than half the time with
an additional breakpoint. In this instance, the five-breakpoint case had been solved within
10% of the relaxed LP 200 seconds sooner than the six-breakpoint case, but failed to converge
on the last few percent for an extended period. Equidistant breakpoints decrease the solution
time by a small amount in the winter week and increase it substantially in the summer week.
Again, it is the final few percent of convergence that leads to the vastly inflated solution time.

Table 4.8 Model runtime in seconds for all configurations, including pre-processing and subsequent
optimisation. O = optimised, E = equidistant, RE = rated efficiency.

No. of breakpoints 2 3 4 5 6

Linearisation RE O E O E O E O E

Winter 366 926 610 880 Fail 847 Fail 1,408 Fail

Summer 300 4,483 17,521 7,202 Fail 15,230 Fail 6,816 Fail

Capacity and dispatch
The change of objective function value when applying piecewise characteristic curves

results from changes in both investment and operation. Varying the impact of part-load
operation leads to different technology choices. For instance, in meeting cooling demand
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in the rated efficiency run, the ECh is chosen to operate as the only technology throughout.
When applying piecewise curves, Figure 4.12a shows that AHP is better suited for part-load
requirements, leaving the ECh for almost exclusive use at its full load. Generally, there is more
use of technologies in full/zero load configurations when piecewise curves are included. This
means that a greater variety of technologies are purchased to avoid running any one of them
at part-load. Purchased technology capacities also vary (Figure 4.12b). In both seasons, ECh
capacity is reduced in the piecewise results and AHP is purchased to account for the deficit.
In the winter week, NGB size is also reduced, balanced by a larger heat storage capacity
(Table 4.9). Storage is used more in piecewise models, leading to lower cumulative system
capacity. These results also show that the utility of the local distribution network is dictated
by technology choices. For example, more power is distributed to the commercial properties
in summer due to the purchase of a smaller µCHP. Although a small CHP is purchased in all
cases, a heat network is avoided. Instead, heat is dumped to the atmosphere. However, the
system is limited in how much heat it can dump, so the plant CHP could feasibly be larger if
that constraint were lifted.

Table 4.9 Comparison between piecewise (P) and rated efficiency (RE) results of distribution network
between, and storage capacity at, demand locations of case study 2. Only 3-breakpoint piecewise
given, for clarity, since investment portfolios of piecewise models are all very similar.

Distribution Storage

Gas Heat Power Cooling Power Heat

RE P RE P RE P RE P RE P RE P

Winter

commercial 1304 1224 0 0 71 75 0 24 7 0 0 59

domestic 69 67 0 0 41 37 0 0 7 7 145 145

Summer

commercial 788 622 0 0 40 135 0 7 7 7 230 289

domestic 6 9 8 0 40 43 0 0 7 7 5 8
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Figure 4.12 Comparison of optimal capacity and dispatch as the number of piecewise linear breakpoints
is increased from two (rated efficiency) to six, for case study 2 operating in summer and winter.
Dispatch shows a histogram of the number of hours a technology operates between 10% increments
of load rate, with zero and full load given at the extreme ends of the histograms as thin vertical lines.
Only 3-breakpoint piecewise given when comparing capacity, since investment portfolios of piecewise
models are all very similar.
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4.4 Discussion

When choosing how to represent technology part-load characteristics, piecewise linearisation
has an influence on the objective function value. By better matching the nonlinear curves,
the optimal system is more expensive in both case studies. This greater expense is more
representative of the ‘real’ cost of the optimal system. In fact the ‘cheaper’ systems, as
given when using nominal efficiency, are ultimately more expensive when the nonlinear
curves are applied ex-post or the nonlinear models manage to reach their global optimum.
But, the improvement in accuracy comes with a solution time penalty. Between studies, a
range of four orders of magnitude in solution time is seen, depending on whether a nominal
efficiency is used or nonlinearities are fully represented using ϵDE. The smallest jump is
when using CBS to piecewise linearise, as there is at most an order of magnitude time
penalty. When using SOS2 to piecewise linearise in the second case study, the time penalty
compared to nominal efficiency is two orders of magnitude. Different solution times are
acceptable for different schedule optimisation purposes. Although control systems which
automate system management in real-time require instantaneous results from which to act,
operation scheduling as part of system design is less time critical; a designer can wait for
a result with no adverse effects. Timing requirements contrast with realistic representation
requirements. Knowing that a battery must meet e.g. 30kW or 32kW at a given instant is more
important five minutes before the instant than it is during the design phase. It is not currently
possible to optimise with the most realistic, nonlinear representation of technologies in a
time that is viable for instantaneous control. System designers may also find solution time
prohibitive, especially when it invariably becomes several days for a larger problem, spatially
and temporally. Design is iterative and to ensure that iterations can be checked it needs to be
simple and quick.

If looking to use piecewise linearisation, it is possible to realise solution time improve-
ments by both using CBS and optimising breakpoint placement. As an increasing number of
breakpoints does not greatly reduce the curve fit error, it is possible to further limit the CBS
piecewise time penalty by going no further than three breakpoints. The 2.5x time penalty
in winter for introducing three breakpoints is probably justifiable. However, the 15x time
penalty in summer may become unacceptable. Equally, choosing three equidistant piecewise
breakpoints proves beneficial in the winter case (1.5x quicker than optimised breakpoints)
but certainly not in the summer case (4x slower than optimised breakpoints). These three-
breakpoint piecewise models have the same number of decision variables, which leads to
agreement with Bischi et al. (2014) that breakpoint positioning is an important factor in
piecewise linearisation. In equidistant positioning, the central breakpoint is at 50% load
rate, which requires more branches to be searched, as there could be an optimal schedule
with technologies operating either side. Conversely, the central breakpoint when optimising
positioning, tends towards a 20-30% load rate. This breakpoint sits in a less critical part of the
curve because so few possible solutions involve technologies operating at such low load rate.
This problem of hopping either side of breakpoints is only exacerbated by a greater number
of them, hence the solution time increasing with number of breakpoints. Thus, assigning
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breakpoint locations to facilitate rapid convergence is difficult. Certainly, avoiding SOS2
and assigning breakpoints for strictly increasing/decreasing gradient is a good first step in
reducing solution time, as the number of decision variables is reduced. Further study is
required to better understand the critical nature of breakpoints. One possible method is to
run the model with a lower tolerance (e.g. 10% gap between the MILP result and the LP
relaxation). With this solution, the change in operation schedule will already be evident.
Critical operating regions could then be identified, and breakpoints re-adjusted to avoid
those regions. The design decision also depends on the purpose of the model: feasibility
level studies could model with nominal efficiencies to get a lower system cost, then apply
nonlinear curves ex-post to get an upper bound. The piecewise system cost will exist within
that range. Only on undertaking detailed design, for investment portfolio and operating
schedule, would piecewise curves be necessary.

With a particularly long time to prepare a model, it may become feasible to instead
consider the nonlinear load curves, using an algorithm like ϵDE. Alongside a lengthy time to
solution, the optimisation result of the ϵDE model displayed a completely different hot water
operation schedule to that of the MILP model. As the operation cost varies so little, these
scheduling differences provide an additional decision criterion of user subjectivity. On one
hand, the MILP schedule would allow the user to downsize their hot water tank to half the
size of that in the ϵDE case. But, the irregular charge/discharge could have adverse effects
which are not bounded by the problem. For example, mixing hot/cold fluids in the stratified
tank could have a noticeable impact on the stratification. Effects could also be beneficial, in
which the greater quantity of heat stored during the day would lead to less heat loss, because
ambient temperature is higher. Whether one schedule is more beneficial than another is
difficult to discern, due to the complex thermodynamic processes. The model considers them
to be equally good due to simplicity of storage representation across all algorithms.

Where load rates are used, the shape of the nonlinear curve clearly has an impact. The
minimum load rate, which causes a rapid change in efficiency for most technologies, may
vary between manufacturers. Certainly, the load curves used in this research do not entirely
agree with those used elsewhere (e.g. Bischi et al., 2014). When considering masterplan level
design, there is little to no knowledge of the exact technologies that will be used, making
it difficult to include nonlinear characteristics that will actually be representative of the
technologies. This raises the question of whether piecewise linearisation of an incorrect curve
is worse than using a nominal efficiency and, as such, whether it is worth the time penalty
incurred in incorporating the perceived better representation.
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4.5 Conclusions

This chapter has compared five representations of technology part-load consumption curves.
They increase in simplicity, from the full nonlinear representation to the use of rated efficiency
for all part-load conditions. In between, nonlinearities are described by linear pieces. All but
the nonlinear representation can be incorporated into a mixed integer linear programming
(MILP) model. Ultimately, MILP offers speed and simplicity. Piecewise linearisation allows
gap bridging; it leads to slower solution times compared to using rated efficiency, but is fast
compared to epsilon constraint differential evolution (ϵDE). The operation schedule is also
similar to ϵDE, but lack of temperature tracking prevents it from being fully representative.
The importance of temperature tracking would be further pronounced on a district level,
where heated or cooled water is transported over long distances.

Within piecewise curve representations, further improvements in solution time are pos-
sible without loss of understanding. Most of the part-load curves in this chapter meet the
requirements for representation using simple convex bounding sets (CBS), instead of the
more complex special order set constraint of type 2 (SOS2), thanks to the strictly increasing
gradient of part-load curves. Although the combined heat and power plant (CHP) part-load
curves did not meet this requirement, automation of breakpoint allocation can be used to
enforce it in the piecewise representation whilst minimising its error relative to the nonlinear
curve. Indeed, automation proves to be a straightforward extension of piecewise linearisation
methods. It can successfully be employed to select the best position of breakpoints along the
piecewise curve, reducing the ex-ante error compared to heuristic allocation.

Although piecewise linearisation is a viable method to better represent technology char-
acteristics, it may still prove to be too cumbersome in some analyses. Using CBS can lead
to models which solve 15 times slower than when using a rated efficiency. It also requires
that nonlinear characteristics for technologies are known. In this chapter, recommended rep-
resentations from a government body were used, but their disagreement with other studies
raises questions of the impact an incorrect curve would have on real operation of a system.
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ited by real systems. For instance, in simulating demand for UK commercial properties, the
deviation between expected and metered annual demand has been reported to be anywhere
between 16% and 500% (The Carbon Trust, 2011). Therefore, if optimisation takes place using
simulated demand, unexpected variations could result in system failure once commissioned.

Furthermore, national grid electricity (GridE) is assumed to be permanently available
in district energy modelling and is a source of energy that is often chosen in preference to
other technologies. In sensitivity analyses, Wouters et al. (2015) increased the cost of GridE
in their small district, showing that even if the cost doubles, grid electricity is still the key
electricity source in the system. Yet, although an average UK customer experiences fewer than
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installed capacity of a system is sufficiently large to meet unexpectedly high demand or to
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overcome periods of power interruption. This approach could be considered as risk-unaware
or particularly risk-averse, since capacity is set so high above the ‘perfect-foresight’ optimum.
A limited knowledge of the risk informs the safety factor, leading to technologies that may
never operate at full capacity or demand that might not be fully met; a designer cannot know
beforehand whether either case will transpire. If additional cost is to be incurred in light of
uncertainty, then the resilience of the resulting system should be well understood, to justify
that increase.

Methods do exist for optimising energy systems to improve their resilience to uncertainty
in system parameters. When implemented, these methods consider resilience from the
perspective of robustness, which is one of the many ways in which resilience may be explored
(Woods, 2015). Indeed, a key method, if the uncertain parameters are independent and
well-bounded, is robust optimisation (RO). Zugno et al. (2016) considered uncertainty in both
heat demand and electricity market price in a day-ahead unit commitment RO model. Similar
unit commitment studies have increased system robustness to weather, pricing and load
uncertainty (Kazemzadeh et al., 2017; Zhou et al., 2018). However, both the strict requirement
on uncertainty bounding and the computational burden of RO mean it is only viable for
planning small district-scale energy systems (e.g. Akbari et al., 2016; Majewski et al., 2017).

Instead, uncertainty is commonly expressed by distinct scenarios which are then handled
by scenario optimisation (SO)1. In SO, each scenario is optimised in parallel, such that
investment decisions are robust to each scenario realisation. If the scenarios describe the
uncertainty space sufficiently well, then the investment decision will be robust beyond the
realisation of the scenarios for which they are optimised.

Generating scenarios for SO depends on both data availability and a modeller’s desire to
fully describe the uncertainty. A better description of uncertainty will inevitably result in a
more robust system. Whether encapsulating the uncertainty in weather, pricing, technology
characteristics, or demand, three principal methods are used: physics-led, data-driven, or
assuming some level of variance from the average. Of course, the latter is the easiest to
incorporate. Often it is applied to a uniform distribution, where the choice of variance
varies from ±10% (Kuznetsova et al., 2014; Pazouki and Haghifam, 2016; Pazouki et al.,
2014) to ±30% (Ahn and Han, 2018) or ±40% (Yokoyama and Ito, 2002). Other parametric
distributions are also used when assuming variance, particularly Gaussian (Fuentes-Cortés et
al., 2016; Vahid-Pakdel et al., 2017; Yang et al., 2017), but also Weibull (Vahid-Pakdel et al., 2017)
and Kumaraswamy (Narayan and Ponnambalam, 2017). To generate scenarios, Monte Carlo
simulations stochastically sample from within the assumed distributions. Understandably,
the choice of variance significantly influences optimisation results (Ahn and Han, 2018;
Yokoyama and Ito, 2002) and thus cannot be applied without sufficient validation.

Incorporating uncertainty from bottom-up, physics-led (engineering) models requires a
detailed understanding of the physical laws to which a parameter must adhere. For instance,
the thermodynamic interaction of building fabric, external conditions, and occupancy must

1‘Scenario’ and ‘stochastic’ are often used interchangeably to describe the same optimisation procedure. As
stochastic optimisation may refer to other methods of handling stochastic variables, the distinction is made
clear in this thesis by describing the method as scenario optimisation.
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be modelled to understand thermal demand, while meteorological analysis is required
to model weather. Stochastically varying input parameters prior to each simulation will
create a set of future scenarios. In SO, only demand scenarios have been hitherto generated
using engineering models. To do so, parameters such as material properties, ventilation
rates, appliance energy consumption, and building occupancy are varied stochastically
(Mavromatidis et al., 2018b; Rezvan et al., 2013). In such cases, the individual parameters are
assumed to vary according to a normal distribution with assumed variance, which may cause
validation concerns similar to applying the variance directly to demand. Indeed, specifying
the uncertainty surrounding each engineering model parameter can be onerous (Zhao and
Magoulès, 2012), especially when a number of different building types are included in a
district (Reinhart and Cerezo Davila, 2016). Simplifications of this approach consider a
smaller set of parameters to infer building-level energy demand, such as appliance usage
from time-use surveys (Baetens and Saelens, 2016) or typical consumption patterns (Sharafi
and ElMekkawy, 2015), and correlation with heating degree days (Sharafi and ElMekkawy,
2015).

In contrast, top-down data-driven models use historical data to identify inherent variabil-
ity. They implicitly consider the complex interaction of all influencing parameters (predictors).
If a sufficient amount of data is available, it is possible to understand the impact of each
predictor by casting the data into statistical models (Braun et al., 2014; Hong and Jiang, 1995;
Jain et al., 2014; Zhao and Magoulès, 2012). Sufficient data is often available for historical
weather, leading to globally validated statistical models of wind and solar power availability
(Pfenninger and Staffell, 2016; Staffell and Pfenninger, 2016). If there is insufficient data,
the reliability of statistical models to represent the relationships between predictors and
optimisation parameters can be limited. Alternatively, it is possible to sample historical data
directly. In such cases, the emphasis is less on what causes a parameter to vary and more
in capturing the variation such that it need not be assumed. With measured data from an
office building, Gamou et al. (2002) stated that energy demand in any given hour can be
described by a normal distribution, where there is a 95% probability of samples remaining
within ±20% of the mean. More recent studies have used this exact methodology to generate
demand scenarios for optimising energy systems of hospitals (Yang et al., 2017; Zhou et al.,
2013). Similarly, using six years of wind power data, Bruninx and Delarue (2016) showed
that forecasting errors fitted better to the Lévy α-stable distribution than previously assumed
normal, Weibull or β distributions. At its most simple, historical data can be used directly;
Bucciarelli et al. (2018) used 100 recorded days of energy demand as parallel scenarios for
system optimisation.

A common shortcoming across current data-driven approaches for scenario generation
is that autocorrelation is not considered. Energy demand at any particular hour is often
influenced by the demand in other hours of the day, while large meteorological weather
systems lead to spatial interdependence of renewable energy generation (Grams et al., 2017).
The uncertainty described by scenarios without considering autocorrelation can thus be
misleading, and result in incorrect system design. Spatial variations in renewable energy
provision is unlikely to impact district-scale systems. Indeed, no existing studies consider



90 | Decision making under uncertainty

each node to have distinct weather patterns. However, temporal autocorrelation of demand
is particularly pertinent. Mavromatidis et al. (2018b) identified this as a key issue, which
was solved in their study by use of a bottom-up engineering model for generating demand
scenarios. However, scalability of this approach is limited.

Furthermore, the system design resulting from the consideration of uncertainty is rarely
validated on its ability to mitigate risk. If a change in investment is required, which may
inevitably increase system costs, the benefit of that system should be quantified. Therefore, it
is important to test systems against unseen data, so called ‘out-of-sample’ scenarios, which
represent possible realisations of the uncertain parameters under consideration (Conejo et
al., 2010). Akbari et al. (2016) generated ten out-of-sample scenarios to test the investment
decisions resulting from a deterministic and a RO model, finding that the RO result reduced
the standard deviation of unmet demand across the scenarios. Such a result implies an
increase in system robustness, since greater invariance to parameter perturbations has been
achieved (Alderson and Doyle, 2010). Validating with ‘out-of-sample’ tests is not common,
however, which exposes a clear shortcoming of many recent studies (Ahn and Han, 2018;
Majewski et al., 2017; Mavromatidis et al., 2018b)

In this chapter, a new three-step method to handle demand uncertainty in district-scale
energy optimisation is presented, followed by its extension to mitigate the risk of power
interruptions. The proposed method is data-driven and hence, unlike detailed bottom-up
engineering models, scalable for application to large districts. The shortcoming of current
data-driven models is overcome by sampling multivariate nonparametric representations
of historical demand. Therefore, it is possible to account for temporal autocorrelation and
skewness of demand data around the mean value at any given hour.

In the following section, the principal steps of the proposed method are detailed: (1)
Data-driven scenario generation, (2) Scenario reduction, and (3) Scenario optimisation. Two
case studies are used to demonstrate the application of this method: case studies 3 and 4 of
this thesis. They are both introduced in detail in Section 5.2. Case study 3 is an illustrative
district of 17 buildings in Bangalore, India, in which there is a proposed district cooling
network which would be powered by a district combined cooling, heat and power plant
(CCHP) or large-scale energy centre ECh (EC-ECh). Case study 4 is based on a real district
of 46 buildings proposed for development in Cambridge, UK, in which there is a proposed
district heating system which would be powered by a combined heat and power plant (CHP)
or large-scale ground source heat pump (GSHP). In both case studies, scenario generation is
undertaken using historical energy demand collected from existing buildings of the same
archetype and the same geographic location.

The result of applying the three-step method to case studies 3 and 4 is given in Section 5.3.
The degree to which robustness has been incorporated in the optimised designs is validated
by the use of ‘out-of-sample’ tests in Section 5.4. Finally, an extension to the proposed method
is analysed in Section 5.5, in which the impact of power interruptions in case study 3 is
assessed and measures to reduce this risk are explored.
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5.1 Handling uncertain demand

5.1.1 Scenario Generation

Particularly at a masterplanning level, little may be known about buildings within a district,
other than their intended use and floor area. Using high-resolution historical data of other
buildings representing similar use, a multidimensional search space can be created to describe
the possible demand profiles for the district. To create a search space from the available
data, terminology can be borrowed from machine learning by considering ‘features’ and
‘observations’. In the context of energy demand, features are the individual measurable
properties that are being observed. Observations are the existing data describing distinct
instances of those features. Features are the consumption values in each hour of a day, which
have been observed for all historical days for which there is data. Over one year, there would
be 24 features and 365 observations.

Clustering of observations into independent search spaces can help ensure that samples
are more realistic. For example, weekend and weekday electricity consumption will differ
in an office space. Seasons, academic term times, and months are all subjective clusters
that could be chosen. There may be other, unknown metrics by which observations can be
clustered programmatically, such as by K-means and hierarchical clustering (Pfenninger,
2017a). The advantage of subjective clustering is the ability to map those clusters into future
years, which cannot readily be done with clustering algorithms. Typical days are commonly
used in mixed integer linear programming (MILP), reducing the length of the time dimension
from its full scale (e.g. one year - 8760 hours) to anything from three (Mehleri et al., 2012) to
six (Omu et al., 2013) or twelve days (Ameri and Besharati, 2016). Clustered observations
form search spaces which represent ‘typical’ days in the year.

The shape of a search space depends not only on the set (or subset) of observations,
but also the method by which interpolation is undertaken to create a continuous surface
from discrete data. Previous studies have considered well-conditioned demand, which
can be described by a parametric distribution, such as a multivariate normal curve (Sun,
2014; Ward et al., 2016b). However, daily demand profile sets generally do not fit a perfect
Gaussian profile. This is especially the case when observations are acquired from multiple
buildings within a single archetype. There can be sub-clusters of demand profiles with
various local peaks in the distribution. Indeed, an initial analysis shows that demand is not
well conditioned; i.e. it cannot be well described by a parametric distribution. From Figure 5.1
it can be seen that clear clusters of profiles are lost when sampling parametrically, assuming
multivariate normal distributions. The symmetrical nature of multivariate normal sampling
has also led to areas of high profile density to become the sample mean as well as the mode.

Nonparametric sampling can be more representative of the demand. However, as no
assumptions are made about the shape of the input data, the search spaces resulting from
nonparametric sampling are heavily dependent on the input data. One method to overcome
this is to have large training and validation sets to tune the relevant hyperparameters. Two
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Figure 5.1 Comparison of parametric and nonparametric sampling methods as a means to produce
daily profiles for demand. Profiles are at an hourly resolution. Input data given here is for one typical
day, from which 500 profiles were drawn using each of the sampling methods.

approaches are presently discussed in which a smaller data set may still be valid: multi-
building data sets and functional prinicipal component analysis (fPCA).

Replication of the demand profiles of one building is not desired when sampling a search
space. To avoid this, data describing multiple buildings within an archetype can be sampled.
Then, when sampling for an individual building, stochastic profiles will be unlikely to
duplicate any one of the input profile sets. When little is known about a building other than
its archetype, there is validity in this approach. The demand in an archetypal building could
replicate the profiles in any of the input data buildings in that archetype. In fact, combining
data on multiple buildings was used by the masterplanners when assigning archetypal
demand to the Cambridge case study district (Cambridge City Council, 2016).

As data from multiple buildings inform the search space for a single archetype, when two
consecutive days are sampled from the profiles of different buildings in the same archetype,
wildly varying demand may be observed from one day to the next. Much like the intraday
temporal autocorrelation of demand, interday autocorrelation is also necessary. To account
for this, before stochastically sampling profiles, energy intensity for each input building
can be normalised by the maximum demand recorded for that building. After sampling,
modelled buildings had their demand scaled by a randomly assigned normalisation factor
from all those available for their archetype.

Without multiple buildings as input data, another approach must be taken to ensure
samples are representative of the archetype and not only the input building. This can be done
in fPCA since demand for a typical day is treated as a function of time, as opposed to being
discrete data points (Ramsay and Silverman, 2005). It provides a mathematical definition of
the shape of the curve in terms of a number of functional Principal Components (PCs) which
are the same for all the data samples and describe particular features of the data. A set of
weightings, or ‘scores’, is associated with each PC. The scores describe mathematically the
contribution of each PC to the overall day’s demand profile, per end-use. A search space is
then created for each typical day by using the set of scores associated with them (Lu et al.,
2016; Ward et al., 2018; Ward et al., 2016a). Thus, generated demand profiles retain the primary
sense of the input data without it being exactly reproduced.

In both methods of preparing the input data, kernel density estimation (KDE) can be used
to create a probability density function (PDF). In KDE, a kernel (e.g. normal distribution) is
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Figure 5.2 Example of KDE, applied to a single feature observation set. A gaussian kernel has been
applied to each observation in this case.

applied to each feature in the observations, and the overlay of all these individual kernels rep-
resents the full data set. Figure 5.2 represents this with one feature2, which is a nonparametric
distribution due to its lack of a single peak. There are two important hyperparameters which
dictate the efficacy of KDE: the kernel and the bandwidth. The kernel is the shape of the
density function applied to each observation when constructing the full PDF. It is standard to
use a Gaussian kernel (as used in Figure 5.2), but ‘top hat’, ‘triangular’, and ‘Epanechnikov’
are among other kernel choices (Turlach, 1993). The bandwidth is the scale of smoothness
applied to each kernel, akin to the standard deviation of a normal distribution. If bandwidth
= 0, the resulting PDF will have non-zero values only at points corresponding to the input
data. As the bandwidth increases to infinity, the PDF converges on a uniform distribution,
with infinite variance. Sampling from either of these extreme cases is not advisable. Instead,
it is desirable to find the lowest possible bandwidth that fits a training data set and can
reproduce an independent validation data set on sampling. If there are too few observations
for training and validation, k-fold cross-validation can be used in bandwidth and kernel
selection. In k-fold cross-validation, the full data set is randomly partitioned into k subsets.
One subset is retained for validation while the remaining k − 1 sets are used for training.
The process is repeated k times, such that all subsets are used for validation and training
(Refaeilzadeh et al., 2009).

In Figure 5.1 the impact of multivariate nonparametric sampling can be seen using multi-
building sets (Cambridge) and fPCA (Bangalore), both sampled from a KDE-generated PDF.
FPCA samples were generated by Ward et al. (2018) while multi-building sets were prepared
as part of this research. The input data is better represented by nonparametric, rather than
parametric sampling; The demand profiles cover a wider space beyond the range of the input
data, while sub-clusters across the data are still apparent.

2the KDE of 24 features, for each hour in the day, would form a 24-dimensional PDF, which is impossible to
visualise.
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In this chapter, fPCA has been used to generate scenarios for the Bangalore study and
multi-building sets for the Cambridge study. 500 demand profiles are generated per typical
day, per end-use, and per building archetype in kWh/m2. Annual hourly demand scenarios
per building are sampled from these stochastic profiles for a reference year (Cambridge:
2015, Bangalore: 2016), such that no profile is duplicated between days in the year, or
between buildings in the district. A summary of the 500 scenarios is given in Figure 5.8 when
discussing the results of applying this method.

5.1.2 Scenario reduction

A large number of probabilistic demand scenarios per building can result in intractability of
a district energy system optimisation model. Accordingly, the selection of the ‘right’ subset
of scenarios becomes an important step, especially in scenario optimisation models. This
subset of scenarios should be representative of the variations across the larger scenario set
without requiring the whole set to be included in the optimisation model. Conejo et al. (2010)
proposed the use of the fast-forward algorithm to reduce the number of scenarios. Two
primary variants of the method are proposed, both of which aim to reduce the Kantorovich
distance3. Both variants apply a cost metric to each scenario s in the scenario set S, from
which a subset S′ is chosen based on the minimisation of the difference in the probability
distributions describing the costs in S and S′.

The two variants of scenario reduction proposed by Conejo et al. (2010) differ on the cost
metric applied to each scenario. In the first, a key metric describing the scenarios is selected.
This might be the maximum hourly demand per scenario or the total demand over the entire
year. The metric is selected subjectively as a measure that has the biggest impact on the
objective function. The first variant is considered less computationally intensive to apply
and has been used for scenario reduction in existing SO studies (Good and Mancarella, 2017;
Mavromatidis et al., 2018a). The second variant requires that a non-probabilistic optimisation
model is run for each scenario independently. These independent models are a formulation of
the SO model which do not consider uncertainty. They are relatively fast to solve and can be
run in parallel on a high-performance cluster in a matter of minutes. The objective function
value calculated for each scenario is then used in the Kantorovich distance calculation.

A refinement of the second variant, proposed by Bruninx and Delarue (2016), is used in
this study. Conejo et al. (2010) only considered optimisation of operation costs, fixing the
investment cost as a parameter in each of the independent models. Bruninx and Delarue
(2016) included investment and operation costs as decision variables. All decision variables
are therefore part of the independent model optimisation, but binary and integer constraints
were not included for computational efficiency. The independent models in this study retain
the binary ‘purchase’ constraints applied to investment decisions. Because typical days are
used, as against the full time series of annual demand, each independent optimisation runs
within a reasonable solution time (O(100s) on a high-performance cluster).

The process for scenario reduction can be thus summarised as follows:

3For a detailed mathematical formulation, readers are referred to (Conejo et al., 2010; Römisch, 2009).
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1. Optimise the objective function for each scenario in parallel, minimising system cost
(investment and operation) for each case independently.

2. Select a subset of scenarios to represent the 500 input scenarios, by minimising the
Kantorovich distance between the probability density of their objective function values
to that of the full scenario set.

3. Assign each scenario in the full set to the closest (by probability distance) of the scenarios
in the reduced subset, weighting each reduced scenario by the number of scenarios it
represents.

The result of this process is a scenario subset that can be used for tractable scenario
optimisation. It is applied in the same manner for both the Bangalore and Cambridge case
studies. The selected reduced scenarios are detailed alongside results for scenario generation
(SG) and scenario optimisation, in section 5.3.

5.1.3 Scenario optimisation

Once reduced scenarios are derived, the uncertainty described by these scenarios can be dealt
with by SO. A SO model has two stages. The first involves finding the optimal technologies
and their capacities, irrespective of their ability to meet variability in demand. In the second
stage, the optimal technologies are reassessed for their ability to meet variability in energy
demand across all reduced scenarios. The impact of a single scenario is weighted by its
probability of occurrence, Ws′ (Equation 5.1), such that low probability scenarios may operate
in a high cost manner without incurring a large penalty on the overall objective function. In
fact, the strict requirement that demand must be met can be relaxed in favour of a financial
penalty associated with unmet demand. The slack variables in the objective function act
to allow unmet demand or excess supply, but they incur a high cost, bigM. Having unmet
demand is a risk, but if it occurs in a low probability scenario then its impact on the objective
function may be small.

min TSF × ∑
n,x,y

(
yn,x × costy

n,x,k

)
+ ∑

n,x,c,s′,t
Ws′ ×

(
E+
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n,x,k,t − E−
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n,x,k,t + Eex
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n,x,k,t

)
+ bigM ∑

n,c,s′,t
Ws′ ×

(
slack+

n,c,s′,t − slack−
n,c,s′,t

) (5.1)

Where n = node, x = technology, c = energy carrier, k = monetary cost class, t = timestep, y =
capacity type (Ê, Ŝ, etc.), s′ = scenario, and TSF = the timeseries scaling factor. Refer to page
42 for more information on model decision variables and sets.

SO can be approached with varying levels of risk aversion. Here, risk is the impact of
the worst case realisations of the future, i.e. those which incur a high cost. If a modeller is
‘risk-neutral’, Equation 5.1 may be used: scenario impact is proportional to its probability
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of occurrence, irrespective of whether it is high or low risk. Instead, a modeller may choose
to be ‘risk-averse’. A risk measure must then be applied to the objective function, to dis-
proportionally weight scenarios which will lead to a relatively high system cost. One such
risk measure is conditional value at risk (CVaR), which allows particularly unfavourable
scenarios to be severely penalised within the objective function. There are as many possible
system costs in a SO model as there are scenarios, all of which describe a PDF. The CVaR
describes the sum of the expected cost above a given confidence level α ∈ [0, 1) in this PDF
(Figure 5.3). As it concentrates on the right-hand tail of the distribution, it is a risk measure
that is only influenced by the worst-case scenarios. It is an extension of the value at risk (VaR)
measure, which minimizes the cost at the confidence level α, that is better suited to linear
optimisation models (Rockafellar and Uryasev, 2002).

Maurovich-Horvat et al. (2016) used risk-averse SO to accounted for uncertain spot pricing
in the optimal operation of a CHP. CVaR is used to penalise the use of the CHP when the
electricity export price is low. Similarly, Bukhsh et al. (2016) considered risk-averse wind
power operators in energy market clearing. The need to curtail wind power or to operate
back-up generators, due in both cases to incorrect prediction of wind power availability, is
financially penalised within the CVaR component of the objective function.

The risk-averse objective function given in Equation 5.2 adds CVaR to Equation 5.1. CVaR
of a scenario is estimated using η ∈ [0, ∞), weighted by the probability of occurrence of
that scenario, Ws′ , and calculated across scenarios by combination with the model-wide
VaR, ξ. Model-wide parameters α and β describe the confidence interval and risk aversion
hyperparameters, respectively. If β = 0, Equation 5.2 becomes Equation 5.1. ξ and η are
connected to existing decision variables in the model by the constraint given in Equation
5.3. The optimisation looks to balance ξ and η to minimise the risk-aversion penalty. If ξ is
low, the impact of risk-aversion is low but η is necessarily higher. η is only ever non-zero
for scenarios with a penalty cost greater than ξ, but it has a N-fold impact on the penalty,
where N is 1

1−α . If α is 0.9, N becomes 10. Therefore, keeping even the worst case cost low is
beneficial as it allows ξ to remain low without requiring η to ever be non-zero.

min TSF × ∑
n,x,y

(
yn,x × costy

n,x,k

)
+ ∑

n,x,c,s′,t
Ws′ ×

(
E+

n,x,c,s′,t × costprod
n,x,k,t − E−

n,x,c,s′,t × costcon
n,x,k,t + Eex

n,x,c,s′,t × costex
n,x,k,t

)
+ bigM ∑

n,c,s′,t
Ws′ ×

(
slack+

n,c,s′,t − slack−
n,c,s′,t

)
+ β(ξ +

1
1 − α ∑

s′
(Ws′ηs′))

(5.2)

Where n = location, x = technology, c = energy carrier, k = monetary cost class, t = timestep, y
= capacity type (Ê, Ŝ, etc.), s′ = scenario, and TSF = the timeseries scaling factor.
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Figure 5.3 Representation of the CVaR risk measure, which is the expected value of observations above
a given percentile α in the PDF describing all observations in a dataset.

∑
n,x,c,s′,t

Ws′
(

E+
n,x,t × costprod

n,x,k,t − E−
n,x,c,s′,t × costcon

n,x,k,t + Eex
n,x,c,s′,t × costex

n,x,k,t+
)

+bigM ∑
n,c,s′,t

Ws′ ×
(

slack+
n,c,s′,t − slack−

n,c,s′,t

)
)− ξ ≤ ηs′

(5.3)

Where n = location, x = technology, c = energy carrier, k = monetary cost class, t = timestep, y
= capacity type (Ê, Ŝ, etc.), s′ = scenario, & TSF = the timeseries scaling factor.

In this chapter, both risk-neutral and risk-averse SO studies are undertaken. This thesis
focusses on the use of MILP as the optimisation technique. However, other optimisation
techniques can be applied within the proposed SO framework.

Quantifying risk of unmet demand

SO studies which aim to minimise risk may or may not introduce a new penalty cost
associated with risk. Particularly when there is no CVaR component considered, the objective
function remains similar to the single scenario case, only with a weighted sum of the different
scenarios (Bucciarelli et al., 2018; Mavromatidis et al., 2018b; Pazouki and Haghifam, 2016).
Particularly when a risk component is added to the objective function, such as CVaR, some
studies choose to allow scenarios to perform badly, if they are willing to pay the price. For
instance, Bukhsh et al. (2016) used the costs of dispatchable, expensive diesel generators in
cases of insufficient wind supply. Scenarios with low probability of occurrence may risk
committing to selling more energy from wind power, as the impact on the objective function
of requiring to use diesel generators will be low. Similarly, Maurovich-Horvat et al. (2016)
used the higher cost spot electricity and gas prices as a penalty for incorrectly purchasing
energy from the futures market.

Including a penalty term that would otherwise not be chosen in a single scenario model
is useful. It allows models to better consider the probability of the scenarios in making the
decision of how best to meet demand. In this chapter, the risk incurred in the system is that
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demand will not be met. As such, the risk of unmet demand should be quantified. The
energy balance in an energy system explicitly does not allow unmet demand. However, it
does tend to include ‘slack’ variables, which impose a high cost on meeting demand, but
allows for them to be used if, on realising an uncertain future, demand cannot be met. The
use of diesel generators by Bukhsh et al. (2016) could be considered a slack variable, given
that such technologies would not be chosen if no demand uncertainty existed.

Where a physical entity can be used as a slack variable, the associated (usually high) cost
of using that entity is known. In the case of the models represented in this chapter, the penalty
represents a virtual source of energy supply, to ensure all demand is met. This might translate
in reality to a diesel generator for electricity, window-mounted air conditioning for cooling,
or electric radiators for heat. None is likely to incur sufficiently high costs to limit their use
to only extreme cases. Nor should they. If demand is not met by the installed technology
portfolio then it means that these additional technologies have not yet been purchased. Given
the unexpected nature of the unmet demand, making these purchases would inevitably be
retroactive and may not be made at all, if there is no understanding of how often further
instances of unmet demand are likely to occur. This cost therefore must monetize and include
factors such as commercial losses and loss in productivity. Indeed, losses in commercial sales
due to grid-based power outages can be up to 2% in Bangalore (Dollar et al., 2005).

Deciding on the cost of unmet demand in this research is thus subjective. In single-
scenario models, unmet demand is valued at 1x1010, to ensure it only exists to provide model
feasibility. For application as a penalty in a feasible SO model, the cost of unmet demand was
tested using the Bangalore case study introduced in this chapter. The model was optimised
several times, with the cost of unmet demand increasing in each run in increments of a factor
of ten, from 100 INR/kWh to 107 INR/kWh. The result, as expected, is a decrease in unmet
demand with increased cost.

Figure 5.4 shows the magnitude of decrease in unmet demand across 16 scenarios used in
the test, for the penalty range between 100 INR/kWh and 106 INR/kWh. At 107 INR/kWh
there is no unmet demand. Unmet demand is found uniformly across scenarios at penalty
levels 102 and 103 INR/kWh. Only from 104 INR/kWh is there a particular weighting of
unmet demand onto lower probability scenarios.

From 105 INR/kWh, the investment decisions were also seen to stabilise. Although
applying a lower cost to unmet demand ensures that highly unlikely scenarios do not dictate
the investment decision, at costs lower than 105 INR/kWh the reduction of technology
capacity was found to adversely impact most of the scenarios. As such, an unmet demand
penalty of 105 INR/kWh has been applied to the Bangalore case study and, following the
exchange rate of ∼100 INR to GBP, an unmet demand penalty of 103 INR/kWh has been
applied to the Cambridge case study. Both are orders of magnitude greater than the highest
cost for purchasing electricity, but in particularly low probability scenarios it may prove cost
effective to shed load to avoid unnecessarily increasing capacity investment.
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Figure 5.4 Comparison of quantity of unmet demand incurred in various scenarios for penalty rates
(BigM in Equations 5.2 and 5.1) from 100 to 106 INR/kWh, applied to a test model of the Bangalore
case study district. NOTE: Scenarios are given in ascending order of probability, but as the y axis is a
log10 scale, lower probability scenarios appear to have a greater contribution than is actually the case.

5.2 Model configuration

5.2.1 Case studies

The two case studies represent very different techno-economic-geographic contexts and hence
test different types of demand (cooling dominated versus heating dominated) and associated
technologies. Their energy systems are optimised for minimising total costs (investment and
operation, normalised to one year) following the same steps. However, a different manner of
processing historical energy demand data for the scenario generation step is used for each
case study. The reason for this is solely due to the difference in nature and volume of data
available from the two sites. At the same time, it is true that historical data from buildings is
never uniformly available across sites, and future applications of the proposed work may
devise their own techniques for processing their demand data as long as they preserve
key properties for estimating future possible demand scenarios. Piecewise linearisation of
technology part-load consumption curves (detailed in Chapter 4) has not taken place in this
chapter. Due to the greater complexity in the spatial dimension, and addition of the scenario
dimension, only the use of rated efficiency proved tractable.

Bangalore, India
District A collection of office buildings within Bangalore, India have been selected, defining
an illustrative district. Figure 5.5a shows each of these buildings, and the nodes used to
represent them. Most nodes consist of several buildings, which are connected at the same
point on the district cooling network. Building floor area (Table 5.1) has been inferred from
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Figure 5.5 Case study districts.

Table 5.1 Bangalore district node details. GIA = gross internal floor area. Areas given to three
significant figures.

Node A B C D E F G H I J K EC1 N1

GIA (x103m2) 5.44 36.6 12.7 22.4 17.2 78.1 46.6 93.1 23.8 178 39.5
N/A

N/ARoof area (x103m2) 2.72 6.10 3.16 5.60 8.59 11.16 11.65 18.61 5.96 22.31 7.90

Technologies PV, ECh, DG, GridE ECh, CCHP,
StoreT, GridE

the external footprint and number of floors for each building. As the development is fictitious,
no other information is known about these buildings; only their relative size and position is
used to test the modelling approach.

Demand The demand data used in this study has been acquired from a single office building
in Bangalore. Five-minute sub-metered data is available for this building for a range of
end-uses. These end-uses include air conditioning, lighting, and uninterruptible power
supply. The data was captured from December 2015 to November 2016 (inclusive) and is
shown clustered by months and weekend/weekdays (sampling clusters) in Figure 5.6. Air
conditioning electrical consumption is converted to cooling demand by using the variable
refrigerant flow system coefficient of performance (COP) of 1.6. Current literature would
suggest a COP between 3 and 4 (Lee et al., 2018). The low COP is that which was recorded for
the system in operation within the metered office building. Given that the system has been in
place for many years, older literature suggests that it is not an unreasonably low COP. Xia
et al. (2002) recorded a COP lower bound of 1.9, while Zmeureanu (2002) found their rooftop
units to have operational COP of 1.68 ±0.19 and 1.86 ±0.37, which compared particularly
unfavourably to the rated COP of 2.9. To match the resolution of climate data, the five-minute
metered consumption was resampled to hourly data.

There are clear trends visible in Figure 5.6 per sampling cluster, with weekends exhibiting
a greater variation in demand. As expected, climate clearly affects cooling demand, with
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Figure 5.6 Bangalore case study input demand profiles, grouped by sampling cluster and energy
type. Profiles have low opacity such that darker sections indicate significant profile overlap. ‘_we’ =
weekend, ‘_wd’ = weekday.

high April external temperatures causing high cooling requirements. In May, there are many
days with zero demand. These probably correspond to building shutdown days in the
summer holiday period. Some zero demand days may be caused by metering errors, but this
top-down method for assessing demand data makes it difficult to assess whether they are
erroneous points or truly zero-demand days. Stochastic profiles were generated per sampling
cluster by Ward et al. (2018) using fPCA, the result of which is given in Section 5.3.1.

Technologies Table 5.1 shows the available technologies at each node. There is no require-
ment for any technology to be installed at any particular node, as the investment step of
the optimisation will decide this. At a building level, GridE, diesel generators (DGs), and
solar photovoltaic panels (PVs) are possible technologies to meet electricity demand. In
addition to the district cooling system, individual electric chiller (ECh) units can meet cool-
ing demand. In the central energy centres, a large scale ECh or a CCHP can be installed.
The CCHP is either fuelled by diesel (D-CCHP) or biomass (B-CCHP), whose waste ex-
haust heat is redirected through a heat recovery absorption refrigerator to produce cooling.
Thermal energy storage (StoreT) is possible at the energy centre, but due to the relatively
low energy density of cold water, StoreT is not considered at a building level. Technology
costs are collated from various sources. Where costs specific to India were not available,
values from the (UK specific) SPON’S mechanical and electrical services price book (AE-
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Table 5.2 Cambridge district node details. GIA = gross internal floor area.

Node
desk_research
(10 buildings)

lab_research
(17 buildings)

desk_commercial
(18 buildings)

lab_commercial
(1 building) Energy centre

GIA 86,774 176,173 181,908 9,473
N/A

Roof area 26,715 72,648 69,824 5,535

Technologies PV, NGB, ST, StoreE, StoreT CHP, StoreT, GridE

COM, 2015) have been used, assuming a currency conversion factor of 90:1 INR:GBP. More
detail on the district and technology definitions is available in Section B.3 and online at
https://github.com/brynpickering/bangalore-calliope.

Cambridge, UK
District Unlike the Bangalore ‘representative’ district, the Cambridge district is based on
intended development by the University of Cambridge. The West Cambridge site is a campus
of the University, in which there already exists a number of academic, residential, leisure,
and commercial buildings. The plan4 is to construct 383,000m2 of new floorspace, through a
combination of greenfield and brownfield development (the latter directly replacing current
buildings). According to the masterplan (Cambridge City Council, 2016), the district will have
a 42GWh annual heating load, 70% met by a CHP, and 88GWh annual electricity load, 29GWh
of which will be met by the same CHP. To determine this expected load, the buildings on
the proposed site were categorised by archetypes, including ‘desk-based research’, ‘medium
intensity laboratories’, and ‘high intensity laboratories’. Based on the archetype approach,
and following consultation with Aecom, the contracted consultants for the energy plan of
the West Cambridge site, four building archetypes are considered in this study: ‘Desk-based
Commercial’, ‘Desk-based Research’, ‘Lab-based Commercial’, and ‘Lab-based Research’.

Demand The masterplanners used expert judgement and the mean annual demand of
existing buildings to inform the expected demand of the proposed buildings within each
archetype on the West Cambridge site. Similarly, buildings on the University estate have in-
formed the expected demand within this case study district. Gas and electricity consumption
data for 17 buildings have been accessed from across the University. An 80% efficient boiler
is assumed available to meet heat demand from the incoming gas. As with the Bangalore
case study, demand input is grouped by subjective sampling clusters. Many of the buildings
are academic, so clustering of the data is based on weekends/weekdays and the Univer-
sity of Cambridge term dates (Table 5.3), leading to 12 sampling clusters. Different profile
sub-clusters originating from different buildings within the same archetype are evident in
Figure 5.7. In some cases, this can lead to an order of magnitude variation in the possible
peak on a given day. Electricity demand profile shapes are more pronounced than heat-
ing demand profiles, although there is a pronounced morning heating peak in desk-based
research/commercial buildings. On weekends, demand is lower but the profile shape is
more sporadic, particularly in the ‘lab’ archetypes. This is probably caused by lab occupants

4More detail on the West Cambridge plan can be found at http://www.westcambridge.co.uk/

https://github.com/brynpickering/bangalore-calliope
http://www.westcambridge.co.uk/


5.2 Model configuration | 103

Table 5.3 Dates corresponding to Cambridge term times (Term) and vacations (Vac), as used to define
sampling clusters for the Cambridge case study. Dates given for 2015 in month-day format. ‘Vac3’ dates
wrap from December to January.

Term Vac

1 2 3 1 2 3

01-13 to 03-13 04-21 to 06-12 10-06 to 12-04 03-14 to 04-20 06-13 to 10-05 12-05 to 01-12

choosing to work on weekends and unsupervised, energy intensive lab experiments taking
place over weekends. The buildings require less heating in summer (‘Vac2’), with hot water
requirements being the likely cause of the remaining heat demand. Stochastic profiles were
generated per sampling cluster and archetype using KDE, the result of which is given in
Section 5.3.1.

Technologies Buildings within the chosen archetypes are scattered across the development
site. Figure 5.5b shows the proposed CHP would be based in an energy centre at the
western edge of the district. The heating network follows the road network in connecting
to the buildings. To account for the installation of gas pipework, a gas network cost is
applied along the same route. To make the most of a possible energy centre, there is the
possibility of a large-scale GSHP and StoreT to enter into the district system. Nodes in
the district correspond to buildings of different archetypes, with roof area available for
solar technologies and building-level technologies made available, if a district system is not
favourable (see Table 5.2). Building-level heat demand can be met by natural gas boilers
(NGBs) or solar thermal panels (STs), and can be stored using building-level StoreT. PV,
GridE, and CHP output can meet electricity demand. Electricity can also be stored using
electrical battery storage (StoreE) at a building level. Technology costs are primarily taken
from the SPON’S mechanical and electrical services price book (AECOM, 2015). More
detail on the district and technology definitions is available in Section B.4 and online at
https://github.com/brynpickering/cambridge-calliope.

5.2.2 Case study uses

The objective functions in Equations 5.1 and 5.2 are subject to various constraints typical to
energy system models, all of which are formulated within Calliope. Section 3.2 details the
parameters, constraints, and decision variables used in all models in this thesis. Tracking
storage between sampling clusters and SO was introduced to the Calliope framework for
the studies in this chapter. Models were run on a high performance computing cluster, with
optimisation undertaken by the CPLEX solver (v12.6.2) (IBM Corp., 2016).

https://github.com/brynpickering/cambridge-calliope
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Figure 5.7 Cambridge case study input demand profiles, grouped by sampling cluster, archetype, and
energy type. Profiles have low opacity such that darker sections indicate significant profile overlap.
See Table 5.3 for sampling cluster dates and Table 5.2 for buildings per archetype. ‘_we’ = weekend,
‘_wd’ = weekday.
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(h) Archetype: desk_commercial; energy type: gas.

Figure 5.7 (cont.) Cambridge case study input demand profiles, grouped by sampling cluster, arche-
type, and energy type. Profiles have low opacity such that darker sections indicate significant profile
overlap. See Table 5.3 for sampling cluster dates and Table 5.2 for buildings per archetype. ‘_we’ =
weekend, ‘_wd’ = weekday.
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5.3 Results

5.3.1 Scenario generation

Different methods were used to generate scenarios for the Bangalore and Cambridge case
study districts. The Bangalore samples were generated prior to, and outside the scope of
this thesis, using fPCA (Ward et al., 2018). In this chapter, the samples were applied to case
study buildings by scaling them to building floor area and randomly assigning them to days
corresponding to the pre-defined monthly sampling clusters.

For Cambridge, the acquired data included several buildings describing each archetype.
Consequently, KDE was applied to multi-building sets. 96 PDFs are required, to describe
every combination of energy type (2), archetype (4), and sampling cluster (12). To make
the most of the limited observations existing for buildings in the Cambridge district, 5-fold
cross-validation was used to calculate the best-fit bandwidth in the range (0, 1] with either the
‘gaussian’ or ‘top hat’ (i.e. uniform distribution) kernel, using the Python package Scikit-learn
(Pedregosa et al., 2011) for KDE and Hyperopt (Bergstra et al., 2013) for minimising the error
between the validation data and the PDF. Table 5.4 shows the resulting bandwidths and
kernels following 5-fold cross-validation. Only six PDFs are described using a top-hat kernel,
with the rest using a gaussian kernel. The bandwidth of the kernels varies from 0.01 to 0.49.
The four highest bandwidths are used alongside a top-hat kernel, which is to be expected,
as a top-hat kernel ends more abruptly than a gaussian kernel. A higher bandwidth allows
the observations to run more smoothly into each other, but the choice of top-hat kernel
ensures that the probability density function ends abruptly close to the lowest and highest
observations.

Table 5.4 Calculated bandwidths for each KDE subset in the Cambridge case study input dataset.
Underlined values refer to those selected for use with a ‘top-hat’ kernel; all others use a ‘gaussian’
kernel. Background bars highlight relative magnitude of bandwidth.

Figure 5.8 gives the range of all the 500 scenarios of district-wide energy demand per utility
for both case studies. Mean demand profiles are shown as lines and minimum to maximum
range of any scenario is given as a shaded region (also marked on the right side of the y-axis).
Each scenario is an aggregation of the demand for each building and every day in the year.
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The demand in Bangalore is described with 24 distinct sampling clusters (weekend and
weekday per month) and the demand in Cambridge is described with 4 archetype buildings,
each with 12 sampling clusters (academic term times and vacation). These sampling clusters
are evident in the samples, particularly between weekdays and weekends. Electricity demand
shows less variation throughout the year than thermal demand. Indeed, the variation in
thermal demand is not sufficiently well described by the choice of sampling clusters. A
greater number of sampling clusters would better represent the data, leading to smoother
transitions in both case studies. But a greater number of sampling clusters would lead to
fewer observations available when producing PDFs.

There is a high possible deviation from the mean in any of the 500 scenarios, particularly
for electricity and heat demand in Cambridge (Figure 5.9b). The demand in any time interval
could range from 0.5x to 1.5x the mean. Within a set of days associated with the same
sampling cluster, there is much less variation in the peak demand. This variation remains
below 1MW in the mean curve and 5MW in the min/max range. As the profiles in Figures 5.8
and 5.9 aggregate all buildings in the district, the deviation of the profile mean and min/max
is lower than that which is visible on a building-level.

The mean annual demand of the modelled Cambridge district, as determined by the
average of all 500 scenarios, is approximately 1.61x the amount predicted in the energy
masterplan. The modelled mean annual demand is 142GWh electricity and 68.2GWh heat
compared to 88GWh and 42GWh respectively predicted by the masterplan. The masterplan
is based on a single archetypal annual demand mapped to all buildings of that archetype.
As such, it is possibly less accurate than the estimate from SG, suggesting that a greater
demand can be expected on the site. Neither the result of SG nor that of the masterplan can be
validated, however, as none of the buildings on the masterplan site have a detailed physics-
led model associated with them. If they did, only once commissioned in approximately
ten years’ time would results be truly validateable. In Bangalore, the demand cannot be
compared to a district prediction, as no masterplan exists for this illustrative study.

As aforementioned, the optimisation is run only over typical days (TDs), not the full
year given in Figure 5.8. Clustering based on the sampling clusters (24 for Bangalore, 12
for Cambridge) would have been the most straightforward approach to selecting TDs from
the generated scenarios. However, the length of the resulting timeseries was too long for
optimisation tractability in both case studies. Instead, extreme day masking followed by k-
means clustering was undertaken independently on each of the 500 scenarios. For Cambridge,
four extreme days were selected from the timeseries: maximum difference between PV
available resource and electricity demand, maximum difference between ST available resource
and thermal demand, maximum thermal demand, and maximum electricity demand. For
Bangalore, the same masking was undertaken, but ignoring the ST mask, since that technology
is not present in the model. The remaining, unmasked days were then clustered into 9 days
for Bangalore and 2 days for Cambridge. In total, 12 and 6 TDs were used in the optimisation
model for Bangalore and Cambridge, respectively.

The impact of just using TDs, compared to using the full timeseries, can be calculated ex-
ante. The variation between the full scenario demand timeseries and the clustered timeseries
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Figure 5.8 Total hourly district demand in one typical year, as sampled for 500 scenarios. Mean profiles
are depicted by the darker area. To ensure clarity, the profile of all 500 scenarios is not displayed,
instead the minimum to maximum range of all scenarios is given as a lighter shaded region.
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Figure 5.9 TD demand profiles for both Bangalore and Cambridge case study districts. Three traces
are given per TD. The mean trace shows the mean demand across all 500 scenarios and all days within
the TD group. Maximum and minimum traces are the extreme demand profiles from any of the 500
scenarios, on any of the days within the TD group.
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is shown in Figure 5.10. The mean of electricity demand is well captured in the Bangalore case,
but all other distributions show a clear mismatch created when clustering. A less conservative
demand estimate is made in each case, more so when clustering thermal demand. In fact, only
two clustered scenarios have annual cooling demand greater than the lowest full timeseries
scenario cooling demand in the Bangalore case. For the purposes of ensuring demand is
met, it is useful to be conservative with demand, but the result of automated clustering
shows that the opposite is the case. Thus, it is clear that the objective function value will be
underestimated. This expectation is in agreement with previous studies concerned with the
impact of time clustering (Kotzur et al., 2018a; Pfenninger, 2017a). Clustering is a necessity in
this chapter, due to the introduction of the additional scenario dimension. To aid in improving
optimisation results, intra-cluster storage management is implemented 5.

In addition to the ex-ante impact of using TDs, a Bangalore demand scenario was op-
timised with increasing timeseries aggregation, to assess the impact on the result. Scenario
number 70 was chosen, since the sum of annual demand in that scenario is close to the aver-
age of annual demand across all scenarios. The full year demand profile for scenario 70 was
clustered by first masking the same three extreme days as previously discussed: maximum
difference between PV resource and electricity demand, maximum cooling demand, and
maximum electricity demand. The remaining 363 days were then clustered by k-means into
a different number of TDs, from 1 to 256. The optimisation results from each of these models
can be compared, to understand the impact of reducing the time dimension. Figure 5.11
shows that there is a constant reduction in PV investment and increase in ECh investment
as the number of TDs approaches the full timeseries. Yet, to realise this difference, a two
order of magnitude increase in solution time is required. Table 5.5 shows that the solution
time increases consistently with increasing number of TDs, except at 67 and 131 TDs, where
the solution times appear to be reversed: the latter takes half as long to solve as the former.
The additional solution time is caused by optimising the linear relaxation model. The 131
TDs model is also anomalous as it has the lowest optimal investment cost of any number of
the models, although its total system cost (i.e. objective function value (OFV)) fits within the
sequence as expected. The OFV increases with increased number of TDs, caused by increased
operation costs. This is the expected result, given that the clustered demand results given in
Figure 5.10b are shown to be less conservative.

5Inter-cluster storage constraints have been implemented as per Kotzur et al. (2018b).
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Figure 5.10 Comparison of annual energy demand distributions between that derived from the full
timeseries and from the clustered timeseries of 500 generated scenarios in Cambridge and Bangalore.
The clustered timeseries consists of six TDs and 12 TDs in the Cambridge and Bangalore case studies,
respectively. Frequency of annual energy demand derived from the clustered timeseries is shown as
positive in the negative x direction, while the frequency of annual energy demand derived from the
full timeseries is positive in the positive x direction.
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Figure 5.11 Technology energy capacity in the cost minimised result of the Bangalore case study model,
using scenario 70 demand profiles and increasingly aggressive (right to left) timeseries aggregation.
TDs were selected by first masking three extreme days in every model, followed by k-means clustering
of the remaining days, to give a total of 4 to 259 TDs. Energy capacities resulting from optimisation of
the full, unclustered timeseries (366 days) are also shown.

Table 5.5 Comparison of solution time, total system costs, and annual energy demand associated with
the optimal solution of the Bangalore case study scenario 70 model, following increasingly aggressive
(right to left) timeseries aggregation. Three days were masked in every model, with the remaining
days being clustered into 1 to 256 TDs.

Number of model TDs

4 5 7 11 19 35 67 131 259 366

Solution time 11 13 17 29 70 288 1017 547 1472 3134

Cost

Operation 29.1 29.3 29.8 30.2 30.2 33.2 33.3 34.7 34.9 35.7

Investment 4.69 4.74 4.84 4.87 4.92 3.59 3.40 2.88 3.12 3.36

Sum 33.8 34.0 34.7 35.1 35.1 36.8 36.7 37.6 38.0 39.0

Demand

Electricity 41.9 42.1 42.7 43.1 42.9 42.8 42.4 42.4 42.0 42.8

Cooling 7.27 7.53 8.02 8.16 8.36 8.60 8.59 8.30 8.27 8.95

Sum 49.2 49.6 50.7 51.3 51.3 51.4 50.9 50.7 50.3 51.8
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5.3.2 Scenario reduction

When discussing the methodology in section 5.1.2, two approaches to scenario reduction
were introduced. Figure 5.12 allows us to compare two metrics describing the 500 scenarios:
annual total system demand and independently optimal OFV. The better the correlation
between the two metrics, the more likely the simpler of the two (annual total system demand)
could be used for scenario reduction. Clustered annual demand varies in Cambridge by 24%,
compared to an OFV variation of 16% (Figure 5.12a). There is a trend for higher system cost
with an increase in total system demand. In fact, the highest and lowest OFV is associated
with the highest and lowest system demand, respectively. However, the OFV distribution
is skewed towards lower values, leading to a long tail towards high values. This skew is
not exhibited in the total system demand. Additionally, the fourth highest OFV has a total
system demand lower than more than 30 other scenarios. In Bangalore, there is a skew in
both demand and OFV (Figure 5.12b). However, the highest demand scenario results in the
15th highest OFV. There is a smaller percentage variation in both total system demand and
OFV compared to the Cambridge data, at 7% and 11% respectively.

In either case it might be reasonable to select reduced scenarios based on annual demands,
instead of independently optimal OFVs, but differences would be evident at the extremes of
the data. Given the heavy influence these extreme scenarios are likely to have on the scenario
optimisation OFV, selecting based on independently optimal OFV is prudent in both case
studies. Solution times vary across each independent run, 100 – 400 seconds for Cambridge
models and 25 – 50 seconds for Bangalore models. Given that these models can be run in
parallel, there is little reason to avoid this step.

The ten reduced scenarios chosen to represent the full set are also highlighted in Figure
5.12. For Cambridge, there is a clear subset of six scenarios which have a higher OFV than the
rest of the scenario set. This leads to the highest reduced scenario (331) being the 2nd highest
total system demand scenario and 3rd highest OFV scenario. In Bangalore, the corresponding
scenario (6) is not so close to the extreme scenarios. In fact, the highest OFV scenario is 3%
higher than the scenario chosen to represent it.

Table 5.6 shows that the maximum thermal and electricity demand is not given by the
same scenario in Bangalore, although it is in Cambridge. The proportion of scenarios a single
reduced scenario represents ranges from 1.2% to 18.8%; this corresponds to the weight of
each reduced scenario in the objective function. The lower weight reduced scenarios are, as
expected, those at the extremes of OFV. Thus, costs incurred in an extreme scenario will have
approximately 10 times less influence on the OFV than in a moderate scenario (see Equation
5.1). In the optimisation, this translates to a risk-based compromise, where one is willing to
accept a relatively high operational cost in unlikely futures (the extreme scenarios) as they
have an order of magnitude lower impact on OFV.

5.3.3 Scenario optimisation

In this section, the result of SO is compared with the result from running a single scenario
model. The single scenario is taken to be the mean of the 500 generated scenarios, to emulate
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Figure 5.12 Total district demand compared to independently optimal OFV for 500 demand scenarios.
Ten scenarios chosen to represent the full set following scenario reduction are highlighted and
numbered. Scatter points are coloured based on the scenario by which they are represented. The
distribution of demand and OFV is given outside the scatter plot.
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Figure 5.12 (cont.) Total district demand compared to independently optimal OFV for 500 demand
scenarios. Ten scenarios chosen to represent the full set following scenario reduction are highlighted
and numbered. Scatter points are coloured based on the scenario by which they are represented. The
distribution of demand and OFV is given outside the scatter plot.
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Table 5.6 Description of 10 reduced scenarios chosen to represent the full set of 500 generated scenarios,
given to three significant figures. Scenarios are ordered by OFV (left to right ascending), as this is the
value on which SR takes place. Highest values in each category are highlighted in .

Scenario 68 388 364 343 72 78 332 301 435 331
Demand

(x107kWh)
Heat 6.68 5.64 7.01 5.68 6.47 7.15 5.93 5.52 6.92 7.23

Electricity 13.2 13.6 13.4 14.0 13.9 13.8 14.2 14.5 14.4 15.1
Sum 19.8 19.3 20.4 19.7 20.3 20.9 20.2 20.0 21.3 22.4

OFV (x107GBP) 1.45 1.47 1.49 1.51 1.52 1.53 1.54 1.55 1.58 1.66

Weight (%) 8.00 15.2 14.0 16.6 11.4 7.40 8.60 8.60 9.00 1.20

(a) Cambridge, UK.

Scenario 313 401 386 254 321 70 380 276 245 6
Demand

(x106kWh)
Cooling 7.64 7.96 8.07 7.89 7.91 8.17 8.31 8.31 8.23 8.30

Electricity 42.3 42.1 42.4 42.7 42.6 42.9 43.3 43.6 44.0 44.0
Sum 50.0 50.0 50.4 50.6 50.5 51.0 51.6 51.9 52.2 52.4

OFV (x108INR) 3.37 3.40 3.42 3.44 3.46 3.49 3.52 3.54 3.56 3.61

Weight (%) 3.00 7.00 14.0 18.2 18.8 18.2 10.4 5.00 3.60 1.80

(b) Bangalore, India.

the use of ‘archetypal’ profiles of demand. Running the Cambridge ‘mean’ model took 238
seconds to solve with an OFV of 1.52x107 GBP. The Bangalore ‘mean’ model took 45 seconds
to solve with an OFV of 3.39x108 INR. The Cambridge case took longer to solve due to its
larger spatial size; it is four times larger than the Bangalore model.

Risk-neutral

Optimisation of the 10 reduced scenarios by risk-neutral SO took 30 minutes and 4.32
hours to reach a solution for the Bangalore and Cambridge cases, respectively. This constitutes
a two order of magnitude increase in solution time relative to the respective mean models.
The results follow similar trends in both case studies, as shown by the installed capacity
at each node given in Figure 5.13. Only demand nodes have installed capacity; there are
no energy centre technologies included in the investment portfolio. This is caused by the
prohibitive cost of laying thermal network pipes, a cost not often included in district network
studies. Renewable energy technologies are also not considered in the Cambridge case.

Storage technologies are introduced in the Cambridge SO result, alongside an increase in
both national grid and boiler capacity (Figure 5.13a). No new technologies are incorporated
in the Bangalore case, but there is a similar trend towards increasing conventional energy
technology capacity (Figure 5.13b). However, PV capacity reduces by almost 1MW in the
Bangalore SO result; this is the only capacity reduction caused by incorporating uncertainty.
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Figure 5.14 shows that due to the smaller installed capacity in the mean model, conven-
tional technologies will run more frequently. The capacity factor (total carrier production as
a proportion of installed energy capacity) of conventional technologies is particularly high
in the mean model, even greater than any of the 500 independently optimal scenarios for
GridE, ECh, and NGB. This leads to less available capacity for meeting additional demand
in the mean model. Conversely, SO technologies have greater capacity and lower capacity
factor. The range of capacity factor for SO conventional technologies differs to that of the
independent scenarios, being lower in the Bangalore case and greater in the Cambridge case.
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Figure 5.13 Installed capacity of technologies to achieve the optimal OFV in both mean (single scenario)
and SO cases. Available technologies with zero capacity have been omitted, such as all those at the
energy centre. The contribution from each node to the total technology capacity has been differentiated
with a colour gradient. Although, in some cases (e.g. ‘StoreT‘ in (a)), not all nodes have installed
capacity.

Incurred costs are high as a result of SO. In Cambridge, there is an additional investment
cost of +2x105 GBP required to meet the demand of 10 SO scenarios. However, operation
cost realised in any of the 10 scenarios is low. The mean operation cost reduces relative to
the mean model and to the mean of the 500 independent scenarios (Figure 5.15a). This is
particularly important, as the operation costs contribute to over 95% of the overall costs.
In Bangalore, the costs are inverted: investment cost is marginally lower than the mean
model, but operation costs are significantly higher (Figure 5.15b). This is caused by the use of
load shedding in low probability scenarios, rather than increase technology capacity. This is
somewhat counterintuitive, since operation costs are approximately six times greater than
the investment costs. In both cases, the mean OFV (sum of operation and investment costs) is
higher in SO than in the mean model or the independently optimal models. This does not
make the single scenario models better, as the cost they portray relies on the demand being
exactly that given by the single scenario. They cannot necessarily meet demand in all future
scenarios used in SO, let alone doing so at a lower cost.
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Figure 5.14 Installed capacity (right) and capacity factor (left) for conventional technologies chosen to
achieve the optimal OFV in the mean, 10-scenario SO, and 500 independent scenario model runs for
both Cambridge and Bangalore case studies. Distributions are given for SO capacity factor (positive
frequency in positive x direction), 500 independent scenario capacity factor (positive frequency in
negative x direction) and 500 independent scenario energy capacity (frequency mirrored about the
y axis). All other results are single values. Capacity factor is the total energy production / energy
capacity.
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Figure 5.15 Contribution of investment and operation costs to the OFV of the mean model, 10-scenario
SO model, and all 500 independent scenario models. Distributions are given for SO operation
cost (positive frequency in positive x direction), 500 independent scenario operation cost (positive
frequency in negative x direction) and 500 independent scenario investment cost (frequency mirrored
about the y axis). All other results are single values.
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Risk-averse

Risk-aversion involves adding the CVaR term to the SO objective function (see Equation
5.2). In this section α is set to 0.9, which will impact the 10% highest operation cost scenarios.
β, the degree of risk aversion is set to 4 in the Bangalore case and to 16 in the Cambridge case;
Section 5.3.3 explores the choice of β in more detail.

Figure 5.16 shows that the standard deviation of total system cost incurred on the realisa-
tion of a scenario is lower when including the risk-aversion term. This means a designer can
be more confident of the expected system cost, but the mean cost is higher. Again, reducing
risk leads to greater initial expectation of incurred costs. The change in shape of the system
cost distribution is led by changes in operation cost: in Cambridge and Bangalore, the lowest
operation cost increases. In Bangalore, the highest possible operation cost also decreases,
thus mitigating the worst case cost for the same investment cost. In Cambridge, the worst
case operation cost remains the same, but the investment cost reduces by 10%. This leads to
the small reduction in maximum realisable cost seen in Figure 5.16a.

The CVaR has been lowered in both models, but only by a small amount. This matches
the small variation in installed energy capacity seen in Figure 5.17. There is no perceptible
difference between the risk-neutral and risk-averse capacities in the Bangalore case study,
although the ECh capacity has marginally increased at the cost of reduced StoreE discharge
capacity. The reduction in storage capacity is more evident in the Cambridge case study,
where StoreT is more than halved and StoreE is removed completely. Although storage
technologies offer flexibility in meeting fluctuations in demand, they are considered to be
less cost effective than ensuring sufficient conventional technology capacity.

Sensitivity analysis

This chapter introduces a number of new hyperparameters to the optimisation problems,
namely the number of reduced scenarios and the magnitude of risk aversion β. Unlike the
breakpoint hyperparameters studied in Chapter 4, pre-optimisation of SO hyperparameters
was not applicable. However, sensitivity analysis can be undertaken to assess the impact of
hyperparameter variability.

The number of reduced scenarios and magnitude of risk aversion were varied in the
Bangalore case study. Reduced scenarios were varied from 5 to 30, run each time against β

values varying from 0 to 16. Figure 5.18 shows the change in the optimal system cost realised
in each iteration of sensitivity analysis alongside solution time of each model. Three expected
trends are exhibited. First, the range in realisable system costs increases as the number of
scenarios considered in SO increases. This occurs as the weight associated with extreme
scenarios decreases, allowing them to take on larger costs without greatly impacting the OFV.
Second, as β increases, the maximum realisable cost scenario reduces. A larger β leads to
greater risk aversion, which directly impacts the most extreme scenario(s). Third, the solution
time increases as the number of scenarios (and thus number of decision variables) increases.

However, Figure 5.18 shows many instances in which exceptions to these trends occur.
The range of realisable costs increases drastically at 20 scenarios (hence the need to separate
Figures 5.18a and 5.18b), then decreases again at 30 scenarios. This extreme increase is caused
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Figure 5.16 Distribution of total system cost resulting from running models using risk-neutral SO, risk-
averse SO, and risk-unaware optimisation on all 500 independent scenarios. Data points from which
the distributions are constructed are identified. The CVaR resulting from running the risk-neutral and
risk-averse SO models is also marked.
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Figure 5.17 Optimal energy capacity resulting from running the mean model compared to using
risk-neutral SO and risk-averse SO. Building-level technologies have been aggregated to give the total
district-wide capacity for those technologies.

by the most extreme reduced scenario only representing itself. This gives it a weight of 0.2%,
which is significantly lower than other scenarios in the reduced set. Excessive load shedding
takes place in this one scenario, without noticeably impacting the OFV. The same scenario
exists in the 30 reduced scenario set, but it no longer has a significantly lower weight than
other scenarios in the set.

At 20 scenarios, the impact of β is most evident: the highest realisable cost reduces by a
third. An additional 35 million INR is removed from this cost for β values above 2. At both 10
and 15 scenarios there is also a reduction in the most extreme cost following the introduction
of β, which continues to decrease up to β = 16, albeit at a lower rate. At 5 scenarios, risk
aversion only impacts the most extreme cost from β = 4. As there is only one scenario affected
by the CVaR term at 5 scenarios (i.e. in the top decile of the cost PDF), this low impact is
expected. The same cannot be said for the 30 scenario model, which has seven scenarios
which are affected by the CVaR term. Yet, there is only a 1 million INR decrease from β = 0.5
to β = 16. It is also the only model in which the highest realisable cost actually increases with
the introduction of risk-aversion.

Solution time is a function of the number of decision variables, but some problems are
more straightforward to solve than others. For instance no model run at 20 reduced scenarios
takes longer than 2x104 seconds to solve. At 15 scenarios, the solution time when β = 4 is
twice this limit, at 4x104 seconds. The introduction of risk aversion leads to an iterative
constraint, which requires compromising between the value of CVaR and the risk-neutral
component of the objective function. If these components are particularly well-balanced,
converging on the optimal solution will take time. Convergence issues are most evident
between β = 1, β = 2 and β = 4. The solution time varies considerably between these levels
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Figure 5.18 Result of sensitivity analysis on the levels of risk aversion β and number of reduced
scenarios used in risk-averse SO, applied to the Bangalore case study. Comparisons are made between
the range of system costs (investment + operational) and solution time following the optimisation of
each model.
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of risk aversion, with the direction of the solution time swing depending on the number of
reduced scenarios.

Although there is a relatively large range in OFV, this is not accompanied by a noticeable
variation in investment decision. All SO models choose a similar combination of technologies
to that given in Figure 5.17b, which itself shows little variation between the risk-neutral and
risk-averse investment capacity. Only at five scenarios is there a difference in investment
capacity; both GridE and ECh have a 10% lower capacity than given in models using a greater
number of reduced scenarios.
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5.4 Out-of-sample testing

Although we expect to account for uncertainty by using SO, it is not immediately apparent
how well a solution covers the possible realisations of the future. It is also not clear from just
considering the investment portfolios resulting from SO how much more resilient a solution is
to a particular risk compared to those objectives which did not consider that risk, or those that
did not consider risk at all. Applying Out-of-sample (OOS) tests to the result of each objective
in this study is one way of assessing resilience ex-post. Indeed, they are considered an
effective approach to evaluate both decisions and the decision making tools used to generate
them (Conejo et al., 2010).

In the OOS tests applied in this section, the investment decisions which have already
taken place, following either single scenario optimisation or SO. These investment decisions
lead to fixed capacities which are then exposed to new operating conditions to evaluate their
performance. The OOS scenarios providing the new operating conditions are stochastically
generated demand scenarios, based on the scenarios generated in preparation for SO.

OOS performance is a measure of robustness or graceful extensibility, which cover two
of the four concepts of resilience as defined by Woods (2015) 6. A robust system is one
which ‘expands the set of disturbances a system can respond to effectively’ (Woods, 2015).
Invariance in a particular sense Z when perturbations of type Y are applied ensures robustness
(Alderson and Doyle, 2010). Based on this definition, we would expect system robustness to
have increased when accounting for uncertainty in system design, perhaps more so when
risk aversion is incorporated. Where uncertainty is not considered in the initial investment
optimisation, the same tests may be considered as a measure of graceful extensibility.

Unlike the definition of robustness, which measures invariance across a particular known
uncertainty set, graceful extensibility is a measure of system brittleness (Woods, 2015). Indeed,
even if variance in OOS tests can be kept low to ensure robustness, resulting systems can
still fail catastrophically when exposed to the realisation of unknown uncertainty in system
parameters (Read, 2005; Woods, 2015). The main goal of a gracefully extensible resilient
system is to not be susceptible to catastrophic failure, even if this means great deviation from
a pre-defined objective function. As such, if the OOS tests of single scenario results show
a relatively low maximum magnitude of unmet demand, then they could be considered as
meeting the requirements of graceful extensibility. If there is an unreasonably high quantity
of unmet demand in the single scenario OOS tests which is significantly lowered on the
introduction of SO, the latter design may instead be considered as having provided graceful
extensibility. In the results pertaining to OOS tests, the variance and magnitude of unmet
demand can be separated to better understand the measure of resilience [2] and [3]. Low
variance indicates a robust system, while a low maximum magnitude indicates graceful
extensibility.

6Woods (2015) also defines two other concepts of resilience, robustness as rebound (resilience [1]) and
sustained adaptability (resilience [4]). Neither is deemed as relevant to the optimisation approach considered in
this research. Resilience [1] cannot be understood, since there is little inter-timestep connection, i.e. only storage
technologies retain knowledge of other timesteps. Resilience [2] requires a greater extent to the boundary of the
system, particularly the interconnection of the energy system with other networks over longer time periods.
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Figure 5.19 Depiction of a rolling horizon optimisation, where decisions are made in step 1 for the
scheduling window, considering an optimisation over the scheduling horizon. Step 2 constitutes a
step forward in time, and another optimisation. Steps 2a and 2b show the realisation of a perfect and
imperfect forecast, respectively.

Rolling horizon optimisation
When running an energy system model to make investment decisions, there is perfect

knowledge of the parameters in every time step, even if there are multiple scenarios. By fixing
technology capacities based on the optimal technology portfolio, a model can be run using a
rolling horizon instead. Although optimisation will take place for the full time series, it is
done in smaller chunks of a few days; each chunk is the scheduling horizon. Optimisation is
run over each horizon, with the intent of implementing only a sub-period: the scheduling
window. The period between the end of the window and the end of the horizon is considered
a ‘forecast’. It is only used to provide a trajectory for the scheduling window. As can be
seen in Figure 5.19, the horizon will ultimately become the window, as the optimisation
steps through time. With perfect foresight (Figure 5.19, step 2a), the parameter values do not
change when moving from the scheduling horizon to the scheduling window. Instead, to
emulate imperfect forecasting, the horizon can be given different parameter values to those
seen in the window, for the same time steps (Figure 5.19, step 2b). Existing studies have
considered both perfect and imperfect forecasting. Where uncertainty has been introduced, it
has included pricing (Jin et al., 2018; Khodabakhsh and Sirouspour, 2016), weather (Jin et al.,
2018; Verrilli et al., 2017), and demand (Giraud et al., 2017; Khodabakhsh and Sirouspour, 2016;
Kopanos et al., 2013). In the perfect foresight case, there is redundancy in the optimisation;
only the results from the scheduling window are actually retained. However, the small
timeseries of a few days can still reduce overall computation time, as linear programming
algorithms tend towards solving in a polynomial time, relative to their size (Megiddo, 1986).

In this chapter, the scheduling horizon and window are 24 hours and 12 hours, respectively.
Perfect foresight is assumed in the demand uncertainty in OOS tests, for which there are 500
scenarios, as produced in the SG step prior to SO (Section 5.1.1).



5.4 out-of-sample testing | 127

5.4.1 Robustness to unexpected demand

SO leads to a more robust technology portfolio, in both Cambridge (Figure 5.20a) and Ban-
galore (Figure 5.20b). By considering 10 scenarios in SO, a much greater range of futures have
been accounted for in the system design, constituting a two order of magnitude reduction
in unmet demand in any realisable scenario compared to the mean model. The maximum
OFV and annual demand independent scenarios also compare favourably to the mean model,
reducing unmet demand by an order of magnitude, although neither manages to improve on
the SO result.

Unmet demand exists in every OOS test, no matter what the initial investment portfolio.
Even when running the corresponding OOS scenario as that which led to the investment
decisions, there is unmet demand. For instance, the highest OFV/demand scenario in
the Cambridge case (346) has 0.76MWh and 1MWh of unmet electricity and heat demand,
respectively, when run in rolling horizon mode against the same scenario demand data.
Not only does rolling horizon mode use data from the full timeseries, thus exposing the
inadequacies in timeseries aggregation, but it also does not allow for storage planning beyond
a two day time horizon. The impact of timeseries aggregation on the highest OFV scenario
in the Bangalore case study (419) is shown in Figure 5.22. The impact is stark: a two order
of magnitude reduction in unmet demand is realised when testing a single-scenario full
timeseries model, compared to the same tests applied when using 12 TDs. In fact, with unmet
demand not increasing above 6x102 for either energy type, the single scenario full timeseries
model performs considerably better than even the risk-neutral SO model. It can thus be
expected that running the SO model using the full timeseries information would yield even
greater improvements. However, for the models in this chapter it is not tractable to do so.

Greater robustness is realised by use of risk aversion. Figure 5.21 shows that this reduction
is relatively small and only perceptibly impacts unmet electricity demand in Bangalore and
unmet heat demand in Cambridge. The reduction in unmet electricity demand in Bangalore
is particularly surprising, given the similarities between risk-neutral and risk-averse energy
capacity (Figure 5.17b). The reduction in unmet heat demand in Cambridge can be explained
more clearly, as risk-aversion led to the reduction in StoreT capacity. Operating a storage
device is more difficult when no information is available beyond the 48 hour time horizon.
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Figure 5.20 System unmet thermal and electricity demand distributions when running OOS optimisa-
tion tests in both Cambridge and Bangalore case studies. The 500 OOS scenarios are those resulting
from SG. Technology capacities have been fixed in the tests to the result of optimising the mean
scenario, scenario with highest OFV (when optimised independently), scenario with the highest total
annual demand, and 10-scenario SO. The same scenario has highest OFV and total annual demand in
the Cambridge case study. Distributions are given as violin plots, whereby size on the y axis give the
range of demand values and size on the x axis gives the frequency of occurrence.
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Figure 5.21 System unmet thermal and electricity demand distributions when running OOS optimisa-
tion tests in both Cambridge and Bangalore case studies. The 500 OOS scenarios are those resulting
from SG. Technology capacities have been fixed in the tests to the result of optimising the 10 reduced
scenarios in SO with and without risk-aversion. Distributions are given as violin plots, whereby size
on the y axis give the range of demand values and size on the x axis gives the frequency of occurrence.
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Figure 5.22 System unmet cooling and electricity demand distributions when running OOS optim-
isation tests for the same demand scenario in the Bangalore case study with either no timeseries
aggregation or aggregation to 12 TDs. The chosen scenario was that which gave the highest OFV
when optimised independently. Distributions are given as violin plots, whereby size on the y axis give
the range of demand values and size on the x axis gives the frequency of occurrence.
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Figure 5.23 Results of sensitivity analysis on the unmet cooling and electricity demand realised in
OOS optimisation tests for varying levels of risk aversion β and number of reduced scenarios, applied
to the Bangalore case study.

Sensitivity analysis
OOS tests have been run on a subset of the results of the sensitivity analysis given in

Section 5.3.3, including β = 2 to β = 8 for 10 scenarios and β = 4 for 5 to 30 scenarios (Figure
5.23). Increasing the number of scenarios in the reduced scenario subset reduces unmet
demand, although less unmet electricity demand is realised when using 10 reduced scenarios
instead of 15 or 20. Equally counterintuitive is the increase in unmet electricity demand with
increasing risk aversion at 10 reduced scenarios. Although the introduction of risk aversion
has clearly had a positive impact, heavily penalising high cost scenarios is less useful.
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5.5 Impact of power interruptions

5.5.1 Reliability of national grid electricity

Power supply interruptions provide shocks to an energy system which can lead to cata-
strophic failure of energy supply. The majority of district energy system studies, which
concentrate on European case studies, do not need to model with a high probability of these
system shocks. However, many areas of Bangalore experience almost daily, unexpected
interruptions to national grid power supply, caused by load-shedding. In fact, the local
utility provider for Bangalore maintains an unscheduled power outage database7. Analysing
this database, it is apparent that there is a great deal of uncertainty in how many distinct
interruptions will take place, when they will occur, and for how long.

Using the recorded power outage periods from December 2014 to July 2015 in Bangalore,
we have constructed a two-part probabilistic representation of intermittency. First, for every
day in the year, there is a 70% chance of an outage. Second, for those days randomly selected
as having an outage, the start and duration of the morning period (00:00 to 11:59) and the
afternoon period (12:00 to 23:59) outages are randomly sampled from lognormal distributions
describing the input data. An outage in a twelve hour period n can encroach on the next
twelve hour period, n + 1, if the start time and duration lead to that. However, a sampled
outage may not continue into the period n + 2, as that suggests sampling from a distribution
tail which does not exist in the data.

The distribution of a full year of sampled intermittency is given in Figure 5.24. As can be
seen, there is a greater than 50% chance that an interruptions will occur around 10:00 and
19:00 – 20:00. The probability reduces drastically overnight, and is somewhat lower in the
middle of the day. This profile of interruptions matches the shape of electricity consumption
in the state, as periods of high consumption are more likely to lead to load-shedding, if the
infrastructure in place is inadequate to handle such levels of demand. Indeed, the sampled
commercial office electricity demand used in this study, described in Figure 5.6, shows a
similar profile shape, particularly on weekdays.

5.5.2 Impact of power interruptions on unsuspecting systems

Unreliable access to GridE is used to augment the OOS tests applied in Section 5.4. Partic-
ularly, given the unexpected nature of power interruptions, an imperfect horizon has been
applied to the rolling horizon method. As such, only in the scheduling window are power
outages realised, in the latter 12 hours of the scheduling horizon, access to the grid is assumed
to again be reliable.

Across the 500 OOS tests, the same 366-day scenario of stochastically generated interrup-
tions is used. Although several scenarios for intermittency in the year could be created, it
would not be as easy to compare OOS test results. However, demand will still be varied
according to the 500 generated scenarios given in Section 5.3.1.

7https://www.bescom.org/upo/public.php

https://www.bescom.org/upo/public.php
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Figure 5.24 Distribution of sampled power interruptions across the Bangalore case study year, based
on historical unscheduled interruption data in Bangalore. Each bar represents the probability of there
being no electricity available from the grid in a given hour of the day.

When the models introduced in Section 5.3 are subjected to power interruptions, it is
clear that they do not gracefully extend to manage this shock. Figure 5.25 shows that the
unmet electricity demand is similar between the mean and SO models, both risk-neutral and
risk-averse. Unmet demand has increased by two and four orders of magnitude for the mean
and SO models, respectively, compared to the reliable grid OOS tests. Cooling demand is
unaffected, however. Although cooling is met electrically using an ECh, this demand is met
in preference to building electricity demand.
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Figure 5.25 System unmet cooling and electricity demand distributions when running OOS optimisa-
tion tests which include electricity power supply interruptions, applied to the Bangalore case study
models. Distributions are given as violin plots, whereby size on the y axis give the range of demand
values and size on the x axis gives the frequency of occurrence.

5.5.3 Introducing resilience

Resilience to power interruptions can be incorporated into the model in several ways. In the
first instance, the system can be designed with the expectation for some degree of expected
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power interruption. Electricity supply availability is considered as a timeseries parameter in
the mean model, with select hours in each day set to zero availability. Using the hourly power
interruption probability seen in Figure 5.24, four levels of availability can be considered. The
most conservative level involves setting any hour with an interruption probability greater
than 20% to zero availability (80% conservatism). The least conservative level considers
only those hours with an interruption probability greater than 50% to zero availability (50%
conservatism). The two levels in between have 60% and 70% conservatism. Rather than
explicitly applying zero electricity availability, it is also possible to update the CVaR constraint
in the SO model to penalise only the dependence of the system on grid supply. In doing so, a
financial incentive is applied to not using the electricity grid. As it is given in the CVaR term,
it will most affect the high dependence scenarios.

Applying electricity supply conservatism to the mean model leads to investment in
building-level DGs to meet demand (Figure 5.26a). Yet, the electricity produced by the
DGs only exceeds that purchased from the grid when conservatism reaches 80% (Figure
5.26b). Investment in a biomass fuelled CCHP (B-CCHP) also occurs, but its contribution is
consistently low. PV capacity does not change relative to the mean model as it is already the
highest possible capacity for the available roof area. At low conservatism, there is greater use
of StoreE, but this decreases by two thirds up to 80% conservatism.

By updating the SO model to penalise only high dependence on the grid, the system
quickly becomes autarkic, i.e. it no longer depends on any electricity from the grid. Although
there is supposedly some GridE capacity at a risk aversion level of β = 4 (Figure 5.26a),
actual purchases from the grid are negligible (Figure 5.26b). Instead, building-level DGs
are the optimal choice. The invested capacity in DGs is similar to 70% grid availability
conservatism, but the subsequent production from that investment is three times greater. If β

= 1, grid dependency remains high, with less than 10% of the risk-neutral SO grid dependence
transferred to DG or B-CCHP production.

The impact on OOS tests is perhaps expected: there is a reduction in unmet demand when
incorporating power interruption resilience. The impact is exhibited on both electricity and
cooling demand, with the possibility of reducing both by several orders of magnitude. Figure
5.27 compares only the models which have incorporated power interruption resilience, in
which there is a two order of magnitude reduction in both unmet electricity and cooling
demand between 50% conservatism and GridE risk-averse SO. As the magnitude of error
decreases, the magnitude of the range of error also decreases, meaning the expected unmet
demand is more certain. Additionally, using the electrically autarkic β = 4 GridE risk-averse
SO results, a lower unmet cooling demand is realised as compared to the original β = 4
risk-averse SO model result shown in Figure 5.21.

An additional 23 million INR of investment is required to install the most conservative
systems, whether resulting from single scenario conservatism or GridE risk-averse SO. This
corresponds to a cost of 1.9 INR per kWh of avoided unmet demand. Intermediate levels of
conservatism are more cost effective, reducing to 1 INR per kWh of avoided unmet demand
at 50% conservatism, albeit with far more unmitigated unmet demand.
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Figure 5.26 Comparison of mean model a) installed capacity and b) annual electricity production to
results given by various models aimed at improving power interruption resilience.



5.6 Discussion | 135

mean = 2.06x105 mean = 2.06x105 

mean = 1.43x105 mean = 1.38x105 

mean = 4.30x103 
0

100k

200k

mean = 1.13x106 

mean = 7.51x105 

mean = 2.38x105 

mean = 8.04x104 
mean = 6.96x104 

0

0.5M

1M

60%50% 80%
Interruption conservatism

70%
GridE penalty SO

β=4 

Co
ol

in
g

El
ec

tr
ic

ity

U
nm

et
 d

em
an

d 
(k

W
h)

Figure 5.27 System unmet cooling and electricity demand distributions when running OOS optim-
isation tests, including the introduction of electricity power supply interruptions, on Bangalore case
study models which have incorporated power interruption resilience.

Table 5.7 Investment cost (x107INR) for optimal solutions derived from Bangalore models aimed at
improving power interruption resilience.

Mean Interruption conservatism GridE penalty SO

50% 60% 70% 80% β = 0 β = 0 β = 4

5.01 6.18 6.29 6.76 7.27 4.92 6.32 7.34

5.6 Discussion

Although there is clear variation in demand exhibited in the generated scenarios, the impact
on technology choice is small. This is likely to be caused by the benefit of conventional
technologies when demand uncertainty is inherent in a system. Renewable technologies
are non-dispatchable and district systems require management of multi-energy distribution;
both limit flexibility. Conventional technologies are also cheaper. It is thus not surprising that
risk-unaware investment decisions are similar to risk-aware ones. The proposed investments
are not identical, however. In Bangalore, there is a reduction in PV capacity when accounting
for demand uncertainty. In Cambridge there is an increase in energy storage capacity. Both
indicate the clear need for increased flexibility in a district system, but are dwarfed by the
additional capacity deemed necessary in conventional technologies. Indeed, much of the
system flexibility is achieved by investment in larger technologies which have a low capacity
factor in any realised demand scenario.

A particular difference between the two case studies is the cost incurred in accounting
for demand uncertainty. In both, the total system cost increases. In Cambridge this is led by
an increase in investment cost, allowing operation costs to reduce relative to the 500 input
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scenarios. In Bangalore, the investment cost decreases relative to the reference model, but
the operation costs increase considerably as a result. Whether one is preferable to another
depends on the decision maker, who may be responsible for only meeting one of the cost
streams.

Introducing risk aversion increases the OFV mean and decreases the standard deviation
in both studies. This is the expected impact from the introduction of the CVaR risk measure
in the objective function. But, it does not lead to perceptible changes in investment decisions
in the Bangalore case. Instead, the operation schedule is changed to mitigate the worst case
costs. This may not seem useful at first, but it does indicate that the investment decision is
the most robust choice available for the system. The small change in technology capacities in
the Cambridge case indicates that the flexibility introduced by heat storage is not as useful as
the increase in conventional technology capacity.

Although there are differences in results between SO and single scenario optimisation, the
impact of this on system robustness can only be understood through OOS tests. As such, the
omission of this step in many existing studies is a clear shortcoming. The impact is positive in
both case studies, whether compared to the reference model or the worst case single-scenario
demand/OFV models. The quantity of unmet demand is noticeable in the reference model,
constituting 5 – 10% of the annual demand, depending on the case study and energy type.
This is reduced to less than 1% by the introduction of SO, but could be further reduced to
negligible levels if the SO model were built over the full time horizon. Unfortunately, such
models would be intractable, so the possible benefits are not known in this thesis.

Unmet demand is not only affected by uncertainty in demand, but also uncertainty in
the availability of supply. In fact, power interruptions, which are an almost daily occurrence
in Bangalore, have a much greater impact on systems which do not expect them than the
impact of uncertain demand. As with demand uncertainty, it is possible to mitigate the
effect of power interruptions. Doing so leads to a shift in technology choice, but this choice
is still conventional, primarily towards building-level DGs. This result is reached whether
accounting for power interruptions explicitly, with an increasingly conservative perspective
on supply availability in a single-scenario model, or by reducing reliance on the grid by
updating the three-step methodology to include electricity purchases as a risk in SO.

Unlike the models which only consider demand uncertainty, handling power interruptions
comes at a considerable increase in technology investment costs. However, de-risking power
interruptions is evident in technology choices made for commercial properties in Bangalore,
whereby DGs meet GridE supply shortfall. Indeed, the building from which demand data
was acquired has two diesel generators to handle power interruptions. This additional
investment could be justified if considering it as a cost per unit of mitigated unmet demand,
but this puts pressure on the optimisation results to be realistic. Instead, the magnitude
of unmet demand is likely to be much lower in all models, as evidenced by the impact of
considering the full timeseries. Nonetheless, the results show that technology choice and
sizing varies depending on the degree to which uncertainty is internalised in a model, leaving
it to a decision maker to decide the risks they are, and are not, willing to take.
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5.7 Conclusions

Decision making under uncertainty can be improved by the combination of new sampling
and optimisation techniques. This chapter has proposed a three-step method by which district
energy systems can be designed to be more robust to demand uncertainty than traditional,
single scenario models. These three steps are scenario generation (SG), scenario reduction
(SR), and scenario optimisation (SO). In SG, a multivariate nonparametric sampling method
is used to produce 500 future demand scenarios from historic building-level stochastic
consumption data. Using SR, a scenario subset is chosen to ensure a tractable SO, without
misrepresenting the probability distribution of our 500 initial scenarios.

These three steps have been applied to illustrative case studies in Cambridge, UK, and Ban-
galore, India. By using out-of-sample (OOS) scenarios, unmet demand has been quantified
for SO and single scenario technology investment portfolios. Robustness to unmet demand
increases by two orders of magnitude in both cases when using SO-derived technology
capacities over those derived from a scenario representing business-as-usual optimisation.
In the Cambridge case, this robustness comes at a high cost of +2x105 GBP investment. In
Bangalore, greater robustness can be achieved at a lower investment cost than given by
the mean scenario, but given the expectation that load shedding will be required if a low
probability scenario is realised. By direct application to a masterplan-level site (Cambridge),
this method has been demonstrated as a viable tool for use by decision makers to improve
decision robustness.

The Bangalore system was also subjected to power interruptions, which is an existing
issue for buildings connected to the national electricity grid in the city. The resilience of
investment portfolios was first analysed, which constitutes those which were completely
unaware of the possibility of interruptions. The increase in unmet demand suggests that the
investment portfolios are not resilient. Consequently, the risk being mitigated in SO was
updated to reduce dependence on grid electricity, such that the resulting system maintains
low levels of unmet demand in OOS tests even when power interruptions are included.

Contrary to existing literature, district energy systems are not considered cost-optimal in
this chapter. Conventional energy technologies are preferred, such as building-level natural
gas boilers (NGBs), electric chillers (EChs) and, when power interruptions are introduced,
diesel generators (DGs). There is some reliance on rooftop solar photovoltaic panel (PV) in
Bangalore. However, increased robustness leads to reduction in capacity. If district systems
are to be included, due to perceived additional benefits or regulatory requirements, then the
objective must change. Nevertheless, it can be readily seen that doing so is unlikely to aid in
the endeavour to improve system robustness to unmet demand.





Chapter 6

Whose objective is it anyway?

In district energy system optimisation, the aim is often to minimise cost for a given set of
demand. Depending on the stage of development, this may refer to the cost of operating an
existing system (Ren et al., 2010), of investing in a system for a new development (Keirstead
et al., 2010), or of upgrading existing infrastructure (Farzaneh et al., 2016; Omu et al., 2015). In
all such cases, the objective function of the optimisation model is a monetary cost function of
technology capacity and/or dispatch.

At a district level, the decision being made is between energy conversion within buildings
(decentralised) or in a district-wide energy centre (centralised). Centralised district energy
systems are considered an improvement on incumbent designs due to their energy efficiency
and the possibility of emissions reduction. Studies have strengthened this claim, reporting
23% - 50% reductions in carbon emissions as a result of meeting district energy demand with
a centralised system (Li et al., 2016a; Morvaj et al., 2016; Omu et al., 2013). This possibility of
emissions reduction has led to policies incentivising centralised systems, such as the 2025
target of at least 25% of thermal demand to be met by centralised systems by 2025 in London,
UK (GLA, 2016, Ch. 5).

However, the economic viability of centralised systems is a point of contention. Some
studies conclude with considerable possible savings (Jennings et al., 2014; Mehleri et al., 2012),
while others only realise minor savings (Buoro et al., 2014) or even an increase in system cost
(Haikarainen et al., 2014; Omu et al., 2015). The results of Chapter 5 agree with these latter
studies: a monetary objective is insufficient to incentivise the implementation of centralised
district energy systems. However, if district energy systems are optimized only to minimize
monetary cost, carbon emissions could more than double (Jennings et al., 2014).

To balance monetary cost and the increasingly important carbon emissions, studies often
implement a linearised multi-objective optimisation. To do so, carbon emissions are either
monetised and included in the monetary cost objective, or the total allowable carbon emis-
sions is progressively limited whilst maintaining a purely monetary objective. Monetised
emissions may directly represent a ‘carbon tax’ (Mehleri et al., 2012) for CO2 emissions, or a
perceived cost to society resulting from the effects of air pollutants, such as their negative
health impacts (Chen et al., 2016; Omu et al., 2015; Zhang et al., 2015a). Whether a tax or a so-
cial cost, the recommended value to assign emissions can vary quite significantly (Hourcade
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et al., 2017; IWG, 2016; BEIS, 2018b). Instead, emissions can be progressively limited whilst
minimising only monetary cost, also known as the ‘ϵ-constraint method’, allowing a modeller
to examine the trade-off between the two on a cost-carbon Pareto front (Majewski et al., 2017;
Morvaj et al., 2016; Sharafi and ElMekkawy, 2014; Wang et al., 2017; Wei et al., 2016; Zangeneh
et al., 2009). Although a subjective choice must then be made on which solution along the
Pareto front is favoured, the ϵ-constraint method provides a much clearer understanding of
the monetary impact of any marginal reduction in carbon emissions.

In addition to monetary cost and carbon emissions, there is a degree of economic risk,
regulatory uncertainty, and technology lock-in associated with centralising energy production
at district scales (Hawkey et al., 2013; Kelly and Pollitt, 2010). On a technological level, a more
centralised district system requires the introduction of more interdependent systems. With
this interdependence comes the risk of a system which is less resilient (Woods, 2015). In other
words, a centralised district energy system can be more vulnerable to sudden perturbations or
future evolutions of demand due to the effect of cascading failures along interlinked energy
systems.

The literature generally supports this hypothesis: more conventional technologies provide
greater resilience to future variations in demand (Akbari et al., 2016; Majewski et al., 2017).
Indeed, whether resilience is defined as robustness or graceful extensibility, results from
Chapter 5 show that the cost-optimal solution is further weighted towards conventional
decentralised technologies when accounting for demand uncertainty or possible national
grid electricity (GridE) interruptions.

The focus of a design will depend on the actors involved in the decision-making process,
with inevitable compromise resulting when objectives compete. However, there is only a
limited understanding of this compromise in the literature; studies generally only consider
one objective, or at most two. Multi-objective optimisation usually focusses on either cost
and carbon (e.g. Li et al., 2016a; Morvaj et al., 2016; Zhang et al., 2015b) or cost and resilience
(e.g. Bucciarelli et al., 2018; Mavromatidis et al., 2018c; Tanaka et al., 2017; Zhou et al., 2018).

When monetary cost, carbon emissions, and risk aversion are part of the objective in
district energy systems, the impact of the compromise is never fully explored. For instance,
Pazouki and Haghifam (2016) considered the marginal impact on the system design when
varying the importance of resilience, but ignored any variation in the importance of carbon
emissions. Conversely, Mavromatidis et al. (2018a) varied a limit on carbon emissions in a
cost minimising scenario optimisation (SO) model, but did not consider different types of
uncertainty nor degree of risk aversion. Majewski et al. (2017) has made the most progress
in considering the impact of competing objectives, by considering the additional impact of
compounding uncertainties on design whilst also varying the relative importance of carbon
emission and monetary cost reduction using robust optimisation (RO). However, they made
no attempt to validate the robustness of their design using out-of-sample (OOS), such that
the benefits in the direction of a resilience objective are unknown.

To understand the sensitivity in investment decisions to the addition of different decision
makers, it is thus necessary to test individual case studies against a number of objectives and,
where uncertainty is involved, to validate designs against OOS scenarios. In this chapter,
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such a process is undertaken, focussing on eight potential decision makers in the process of
designing a district energy system:

1. The cost-focussed client, who wishes to see the balance of investment and operation
costs minimised;

2. The cost-focussed developer, whose objective is to avoid higher investment costs, even
if it is at the expense of higher operation costs;

3. The cost-focussed occupant, whose objective is to avoid higher operation costs, without
any power over the district investment decisions;

4. The carbon-focussed client, who is willing to pay a cost premium to reduce carbon
emissions resulting from the system operation;

5. The cost-focussed, carbon-aware client, who is obliged to either limit carbon emissions
associated with their development or pay for any emissions they emit;

6. The carbon-focussed, cost-aware developer, who is obliged to reduce carbon emissions
resulting from the system operation, but has a limit on capital investment which can be
afforded;

7. The cost-focussed, district-constrained client, who has to provide a centralised system
to meet a proportion of a district’s thermal demand;

8. The risk-aware client, who wants to ensure that the risk of realising high cost, carbon,
or unmet demand futures is kept low.

Although the list is far from exhaustive, the choice of these eight decision makers aims
to fully encompass the cost-carbon-resilience decision-making nexus as far as is possible in
district energy design. The objective of each decision maker is applied to the two case studies
found in Chapter 5. Reformulations of the objective function, and the resulting impact on
case study model results, are detailed in Section 6.1. In Section 6.2, OOS tests are run to
analyse system robustness to demand uncertainty, to validate the designs resulting from
risk-awareness and to understand the unintended impact of single scenario objectives.

6.1 Reformulating the objective function

Although typical in district energy system research, there are many other forms of the
objective function than that given in Equation 3.26. The objective function is the weighted
sum of various decision variables. On updating the objective function, the model decision
variables remain the same, only their contribution to the objective function differs. Equally,
decision-maker objectives may be influenced by the introduction of new constraints, to ensure
that policy, regulation, or site specific objectives can be incorporated.

A typical district energy system optimisation model aims to minimise system annualised
monetary cost, both from initial capital investment and subsequent technology operation.
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Each of the eight decision makers defined in the previous section may require a reformula-
tion of the objective function, beyond that which is typically used in mixed integer linear
programming (MILP). In this section, each distinct formulation is defined, alongside any
additional constraints which are required. Parameter, set, and decision variable terminology
is given in Table 6.1.

Table 6.1 Decision variables, sets, and parameters defined in this chapter.

(a) Decision variables.

Ê Energy capacity costop Operational costs

E+ Energy carrier production costinv Investment costs

E− Energy carrier consumption P Technology purchase switch

cost System cost slack+ Unmet demand slack

R̂area Resource collection area slack− Unused supply slack

Ŝ Stored energy capacity ξ Value at risk (VaR)

Eex Energy carrier export η Auxiliary risk variable

(b) Sets.

n ∈ nodes Geographic nodes in the system

x ∈ techs Available technologies

t ∈ timesteps Operational timesteps

c ∈ carriers Energy carriers

k ∈ costs Cost classes, where k1 = monetary and k2 = carbon emissions

s′ ∈ S′ Reduced scenarios

y ∈ Y Capacity decision variables {Ê, R̂area, Ŝ, P}

(c) Parameters.

bigM Large numeric value associated with use of slack variables

costex Cost associated with exporting a carrier

costprod Cost associated with producing a carrier

costcon Cost associated with consuming a carrier

costy Capacity cost associated with capacity decision variable y

TSF Timeseries scaling factor

W Scenario weight

α Confidence level

β Risk aversion level



6.1 Reformulating the objective function | 143

6.1.1 The Pareto front

Existing studies which do not consider a cost-focussed client often present a range of optimal
solutions. In non-deterministic modelling, these solutions exist within a convex hull, for
which there is a ‘Pareto front’ describing the dominant solutions (Figure 6.1) (Alarcon-
Rodriguez et al., 2010). Within the hull there will be non-dominant solutions for which there
is another (dominant) solution which achieves a reduced value in the x/y axis, for the same
value in the y/x axis. In MILP, dominant solutions will always be achieved, so only the
Pareto front will be defined. Most studies find that a cost-carbon Pareto front follows a trend
similar to that illustrated in Figure 6.1 (Majewski et al., 2017; Morvaj et al., 2016; Sharafi and
ElMekkawy, 2014; Wang et al., 2017; Wei et al., 2016; Zangeneh et al., 2009). The decision
maker must then make a subjective trade-off to assign preference to one of the dominant
solutions.

In this section, the Pareto front of dominant solutions is given for a number of competing
objectives. The three objectives of interest are: minimising carbon emissions, minimising
investment cost, and minimising operation cost. The two-dimensional Pareto front has
therefore been extended in the following sections to include the values corresponding to a
third objective, shown on the solution markers as colours varying along a colour scale.

CO2 emissions

Co
st

Convex hullNon-dominant solutions

Pareto front

Dominant solutions

Figure 6.1 Representation of a convex hull, containing non-dominant solutions resulting from multi-
objective optimisation, and a Pareto front on which the dominant solutions lie. The dashed line is
described by the dominant solutions.

6.1.2 The cost-focussed client

The objective function for monetary cost minimisation (Equation 6.1) is used most often in
energy system optimisation. This may require the consideration of investment and operation
costs (ϕ = 1) (e.g. Gabrielli et al., 2018; Morvaj et al., 2016; Voll et al., 2015), or only operation
(ϕ = 0) (e.g. Orehounig et al., 2015; Wang et al., 2015). In the latter case, technology capacities
are pre-defined, either to emulate an existing system or to be varied by user-defined scenarios.
When investment costs are included it is necessary to scale them to the operating period being
modelled. If modelling a full year, the investment cost is annualised. The annualised cost
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accounts for both the technology lifetime L and the financial interest rate R by applying the
annualisation factor R

1−(1+R)−L to the investment cost. This annualisation factor can be further

generalised to a timeseries scaling factor (TSF) T
8760 × R

1−(1+R)−L , where T is the number
of operating hours in the model under consideration. Using the TSF, the investment and
operation costs will be weighted equally in the objective function, irrespective of the number
of hours represented in the model.

min ϕ × TSF × ∑
n,x,y

(
yn,x × costy

n,x,k1

)
+ ∑

n,x,c,t

(
E+

n,x,c,k1,t × costprod
n,x,k1t − E−

n,x,c,k1,t × costcon
n,x,k1,t + Eex

n,x,c,k1,t × costex
n,x,k1,t

)
+ bigM ∑

n,c,t

(
slack+

n,c,t − slack−
n,c,t
) (6.1)

The results from the cost-focussed client model are considered as the ‘baseline’ cost model.
For both the Bangalore and Cambridge case studies, the baseline model was optimised in
Chapter 5, in which it was referred to as the ‘mean’ model. There is little monetary incentive
to incorporate centralised systems into the baseline models, although solar photovoltaic
panels (PVs) are installed on up to one third of the available rooftop area in the Bangalore
district.

6.1.3 The cost-focussed developer or occupant

Objective function formulation

When an unequal weighting is desired in the objective function, it is possible to update ϕ

to vary in the range [0, ∞). A higher ϕ will disproportionally weight investment cost, such
that the objective function value will include reduced investment costs at the expense of
high operation costs. However, ϕ is an abstract parameter whose scale cannot readily be
understood when applied to the objective function.

Instead of subjectively assigning values to ϕ, the investment cost can be removed from the
objective function and limited within a constraint referred to as the ϵ constraint (Equation 6.2)
(Farzaneh et al., 2016; Mavromatidis et al., 2018c). Taking the baseline optimal investment cost
as that which is achieved when minimising Equation 6.1, the maximum allowed investment
cost is limited to the baseline cost multiplied by the factor ϵ. A low ϵ will reduce investment
costs at the expense of increased operation costs, and vice versa for a high ϵ. This may
seem more practical to decision makers, as developments will have budgets that must be
met. By varying the magnitude of ϵ, a different optimal configuration of decision variables
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will be reached. However, the overall cost (investment + operation) will be greater if the
configuration does not match the result obtained by the cost-focussed client.

min ∑
n,x,c,t

(
E+

n,x,c,k1,t × costprod
n,x,k1,t − E−

n,x,c,k1,t × costcon
n,x,k1,t + Eex

n,x,c,k1,t × costex
n,x,k1,t

)
+ bigM ∑

n,c,t

(
slack+

n,c,t − slack−
n,c,t
)

s.t. ∑
n,x,y

yn,x × costy
n,x × TSF ≤ ϵ × costinv,baseline

k1

(6.2)

Application of the objective function

By applying two extreme decision-maker priorities to the case study models (respectively
prioritising investment and operation cost), it is possible to calculate the limits on system
cost. Figure 6.2 details the investment and operation costs associated with these two extreme
models. Between the developer (min(costinv)) and the occupant (min(costop)), the Bangalore
case study can vary in investment cost by two orders of magnitude while the Cambridge
case study can vary by five orders of magnitude. The Cambridge baseline model technology
configuration matches the cost-focussed developer results, leading to the same objective
function value (OFV), whereas the lowest investment cost in the Bangalore case study is
a third less than that given by the baseline model. The magnitude of operation costs is
much larger than for investment costs, so although the percentage variation is relatively
low, the magnitude of variation is still significant. Indeed, the occupant could reduce their
annual expenditure by 6x106 GBP and 8x107 INR in the Cambridge and Bangalore districts,
respectively.
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Figure 6.2 Comparison of optimal investment and operation costs for Cambridge and Bangalore case
studies when balancing operation and investment costs (baseline), minimising only investment (inv)
cost, and minimising only operation (op) cost in the objective function. A base-10 logarithmic scale is
used for the y axis.
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ϵ = 1 is given for the optimised investment cost of the baseline models. ϵ values of 1
and 0.3 are associated with the Cambridge and Bangalore cost-focussed developer models,
respectively, given the difference in optimised investment cost relative to the baseline models
shown in Figure 6.2. Models were run using ϵ values starting at these minimum values,
increasing by 0.1 until an ϵ of two was reached, i.e. twice the baseline model investment
cost. The Bangalore Pareto front in Figure 6.3b shows a distinct discontinuity at the baseline
model investment cost. This is an expected shape for the Pareto front, as the operation and
investment costs would form a convex hull which would inevitably include a vertex at which
the optimum, balanced system cost is found. As the Cambridge baseline model has already
minimised investment cost, the same discontinuity does not exist in Figure 6.3a. However,
the linear variation of the Pareto front from ϵ = 1 to 2 is consistent with the same ϵ range in
the Bangalore model.

The technology portfolio varies with ϵ. This is particularly the case in the Bangalore
model, in which there are different choices made either side of the baseline model results
(Figure 6.4b). With a more constrained investment cost, PV capacity decreases, until reaching
the minimum investment cost model where no PV is considered. As the value of ϵ in
Bangalore increases above one, the electricity technology investment decision remains static.
Instead, a centralised cooling system is incrementally introduced. This involves increasing
the capacity of an energy centre ECh (EC-ECh). Although the capacity of the EC-ECh only
reaches a quarter of the cumulative size of the building-level electric chillers (EChs), its
greater efficiency means it can meet more than two thirds of cooling demand in the ϵ = 2
model. There is far less variation in the Cambridge technology portfolio seen in Figure 6.4a,
which introduces some PV capacity as ϵ increases. However, even at ϵ = 2, there is little
noticeable change. This is expected, when considering the large increase in investment cost
required to reach the cost-focussed occupant result.

As the investment cost reduces, and the operation cost reciprocally increases, the carbon
emissions increase. The increase in emissions is in proportion to the increase in operation
cost. Namely, the decrease in emissions is caused by the investment in PVs. This can be seen
in Bangalore, where there is no change in emissions between ϵ = 1 and 2, even though there
is a reduction in use of the less efficient EChs in favour of the EC-ECh.
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Figure 6.3 Investment-operation cost Pareto front following monetary cost minimisation of both case
studies with ϵ-constrained investment cost. Carbon emissions associated with each model run are
given by the marker colour.
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Figure 6.4 Installed energy capacity following monetary cost minimisation of both case studies with
ϵ-constrained investment cost.
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6.1.4 The carbon-focussed occupant

On minimising carbon emissions instead of monetary cost, the objective function becomes
Equation 6.3. Only timeseries emissions are included in this objective function, hence the
occupant being the decision maker in this instance. Embodied emissions are not included.
Time-varying carbon emissions are applied to system resources: natural gas, diesel, biomass,
and grid electricity. As such, investment and operation of renewable energy technologies
and storage technologies has no impact on the OFV.

min ∑
n,x,t

(
E−

n,x,t × costcon
n,x,k2,t

)
(6.3)

The results from the carbon-focussed client model are considered as the ‘baseline’ carbon
model. Figure 6.5 shows that, for both case studies, a centralised system becomes more
viable in the baseline carbon model, when compared to the baseline cost model. Complete
independence from the electricity grid is achieved in Bangalore, in favour of biomass and
diesel fuel use. Although diesel generators (DGs) are often considered as the highly polluting
back-up electricity source, in Bangalore they are able to produce electricity with a lower
emission factor (0.63kgCO2/kWhe) to the national grid (0.7kgCO2/kWhe) (cBalance, 2012).
Such a high emissions factor for GridE (approximately twice that of the UK, for example)
is a function of both the Karnataka state fuel mix and its high transmission losses (∼13%)
(BESCOM, 2017). Figure 6.6 shows that the combined cooling, heat and power plant (CCHP)
is thermally led for half the typical days (TDs). Otherwise, it makes heavy use of cold water
StoreT (StoreT-C) to maximise electrical output. Additional electrical requirements are met by
building-level DGs. Little use is made of electrical battery storage (StoreE), usually charging
at peak PV output and discharging at peak electricity demand, since there is a 2-3 hr lag
between the two peaks.

Of note is the minor use of an ECh in TD 12. In this TD, the PVs overproduce electricity.
Since there is no investment cost in this objective function, there is no disadvantage for the
model to invest in an additional technology to make best use of this excess, namely to meet
electricity demand by ECh instead of by using the biomass fuelled CCHP (B-CCHP), which
does have some carbon emissions associated with its use.

In Cambridge, Figure 6.7 shows that the combined heat and power plant (CHP) is only
used when PV output is low, constituting three of the TDs. This also corresponds to high heat
demand, allowing the CHP to follow heat demand whilst also counteracting low PV output.
The solar thermal panel (ST) is installed, but is used only rarely to meet heat demand at the
same time as heat is produced. Indeed, ST output peaks at the same time heat demand is
particularly low. Instead, the hot water StoreT (StoreT-H) is utilised. However, much of the
heat stored in the summer is dissipated from the heat store before the winter periods, due to
standing losses of the vessel. The ground source heat pump (GSHP) is used as a baseload heat
supply technology. Although quality has not been considered in these models, the relatively
low temperature output of a GSHP would support its use as a baseload technology in a real
system.
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Figure 6.5 Installed capacity of technologies to achieve the optimal OFV in both cost minimisation
and carbon emission minimisation models. Building-level technologies have been aggregated over all
demand nodes. The contribution from each demand node to the total technology capacity has been
differentiated with a colour gradient. Although, in some cases (e.g. natural gas boiler (NGB) in (a),
carbon minimisation), not all nodes have installed capacity.
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Figure 6.6 Timeseries energy production and consumption in the Bangalore case study for technologies
operating in each typical day, as given by the optimal model solution following carbon emission
minimisation.
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Figure 6.6 (cont.) Timeseries energy production and consumption in the Bangalore case study for
technologies operating in each typical day, as given by the optimal model solution following carbon
emission minimisation.

1 2 3 4 5 6

−5k

0

5k

10k

15k

20k

25k

30k

En
er

gy
 p

ro
du

ce
d 

/ 
co

ns
um

ed
 (k

W
h)

Typical day
(a) Electricity.

1 2 3 4 5 6
−5k

0

5k

10k

15k

20k

25k

En
er

gy
 p

ro
du

ce
d 

/ 
co

ns
um

ed
 (k

W
h)

Typical day
(b) Heat.

NGBCHPGSHPPVSTStoreTStoreE GridE demand

Figure 6.7 Timeseries energy production and consumption in the Cambridge case study for technolo-
gies operating in each typical day, as given by the optimal model solution following carbon emission
minimisation.
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6.1.5 The cost-focussed, carbon-aware client

MILP studies rarely model a carbon-focussed occupant. Instead, carbon emissions are
incorporated into the model either 1) by addition into a monetary cost objective by using a
‘cost of carbon’ (Equation 6.4) (Morvaj et al., 2016), or 2) by constraining the total allowed
emissions for the system under consideration (Mavromatidis et al., 2018a).

Objective function formulation
Cost of carbon Two methods for assigning cost can be considered: the market value of
emissions, as given by financial incentives such as an emissions trading scheme, and the
social cost of carbon (SCC). Electricity generators in Europe are obliged to participate in the
emissions trading scheme (EU-ETS). The EU-ETS is a mechanism aimed at creating a market
value for reduced emissions from electricity production. However, its poor performance
in recent years has led to the introduction of a ‘price floor’ in the UK, which increases the
market value of carbon by 18 GBP/tCO2 up to 2020 (Hirst, 2018).

Emissions trading schemes create a market for carbon monetisation and, like any com-
modity, values can fluctuate. Additionally, no emissions trading scheme exists yet in India.
The same cannot be said for the SCC, which is instead the perceived cost to society due to the
emission of CO2 (or other gases with global warming potential) into the atmosphere (IWG,
2016). The SCC considers the financial losses incurred at country level by the direct effects
of climate change on health, forests, and water systems (Akbar et al., 2014; IWG, 2016). The
IWG (2016) recommend an SCC of approximately 14 GBP/tCO2, which was used by Omu
et al. (2015) to understand the cost of district-scale emitted CO2. This closely matches the
value used by Mehleri et al. (2012) of 17€/tCO2, but recommendations differ on the value to
use. In fact, the uncertainty with which the SCC is created and the unlikelihood of higher
values ever filtering through to decision making may make it an unworkable metric (Taylor,
2017). In India, although the recommended cost of carbon is 40 USD/tCO2 today, a more
politically viable cost is expected to be closer to 5 USD/tCO2 (Hourcade et al., 2017). To cover
this uncertainty and encompass the market and social value of carbon emission reduction,
varying costs of carbon can be tested within Equation 6.4. A cost of carbon range, covering
both the current/expected SCC and market values, is given in Table 6.2.

min ϕ × TSF × ∑
n,x,y

(
yn,x × costy

n,x,k1

)
+ ∑

n,x,c,t

(
E+

n,x,c,k1,t × costprod
n,x,k1,t + Eex

n,x,c,k1,t × costex
n,x,k1,t

−E−
n,x,c,k1,t × (costcon

n,x,k1,t + costcon
n,x,k2,t × costk2

n,x,k1,t)
)

+ bigM ∑
n,c,t

(
slack+

n,c,t − slack−
n,c,t
)

(6.4)

ϵ-constrained emissions In light of no enforced cost of carbon in district energy systems,
studies tend to look at how capping operational emissions will impact the system monetary
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Table 6.2 Cost of carbon range, as given by various sources. All values given in 2017 USD/tCO2

Source 2017 2020 2030 2050

(Hourcade et al., 2017) N/A 5 - 40 N/A 105 - 130

(BEIS, 2018b) 0 - 6 0 - 13 24 - 92 N/A

(IWG, 2016) N/A 14 - 73 19 - 86 31 - 112

cost. To do so, the constraint given in Equation 6.5 is added to a model which has cost
minimisation (Equation 6.1) as its objective. The baseline emissions in Equation 6.5 are
taken from the solution of the cost minimisation when an emissions cap is ignored. As with
ϵ-constrained investment cost, the scale factor ϵ can be varied to produce a range of results,
from the cost-minimised emissions to the carbon-minimised emissions. From these results,
an effective cost of carbon can be calculated from the reduction in carbon emissions and the
impact that has on the OFV compared to its value when carbon emissions are ignored.

∑
n,x,c,t

E−
n,x,c,t × costcon

n,x,k2,t ≤ ϵ × costop,baseline
k2 (6.5)

Application of the objective function

There is only a small large range in possible carbon emissions, between the baseline carbon
and baseline cost models. Table 6.3 shows that the Cambridge district could realise only a 20%
reduction in emissions, and the Bangalore district only 25%. Although small, the extremes in
carbon emissions are used as the minimum and maximum system emissions for ϵ-constrained
emissions analysis. This leads to an ϵ range of 0.8–1 for Cambridge and 0.75–1 for Bangalore,
where 1 refers to the carbon emissions of the baseline cost model. The pareto fronts in Figure
6.8 describe the optimal cost system for varying carbon emission limits. The shape is in
agreement with previous studies: there is a steep decline in emissions for a relatively low
cost increase, but the final reduction of emissions is not possible without a considerable cost
increase. Centralised technologies are quickly replaced by building-level technologies in
both systems as the carbon emission limit is relaxed, seen in Figure 6.9. To reach the lowest
possible carbon emission levels, a combination of a large range of technologies is key. In
Cambridge, every available technology in the district is used to some extent at ϵ = 0.8 and
reliance on centralised energy continues until ϵ = 0.88. Although DGs have a lower emissions
factor than GridE in the Bangalore district, the marginal difference between the two leads to
only having DGs in a system which has to reach minimum carbon levels. Similarly, coupling
the B-CCHP with large thermal energy storage (StoreT) capacity is only necessary in the ϵ =
0.75 case. The coupling still exists until ϵ = 0.95, but it is much weaker. There is a preference
for CCHP operation to follow heat load, instead of using StoreT. Whereas investment in PV
is consistent in Bangalore, there is a linear reduction in PV capacity in Cambridge, showing it
to be heavily dependent on a carbon incentive for its deployment.
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Table 6.3 Optimal investment costs, operation costs, and carbon emissions for baseline carbon and
cost models in both Cambridge and Bangalore case studies.

Cambridge Bangalore

costinv costop carbonop costinv costop carbonop

Baseline cost model 2.40x105 1.50x107 7.14x107 5.00x107 2.89x108 2.53x107

Baseline carbon model 5.77x108 ↑ 1.17x107 ↓ 5.66x107 ↓ 2.76x108 ↑ 5.21x108 ↑ 1.90x107 ↓

The cost of carbon is also given for each dominant solution on the Pareto front. The
possible range of imposed carbon costs, given previously in Table 6.2, is 0.365 INR/kgCO2 -
9.49 INR/kgCO2 (0.0036 GBP/kgCO2 - 0.1 GBP/kgCO2). In both case studies, if the highest
cost in the range were applied to the model, a 10% reduction in carbon emissions could
be realised by a cost-focussed developer. A lower cost could still be applied in Bangalore,
leading to a lower emissions saving. In Cambridge, the minimum cost of carbon required to
have any effect is 0.7 GBP/kgCO2. The most realistic, near-term costs of carbon are an order
of magnitude below this.

6.1.6 The carbon-focussed, cost-aware developer

Realistically, investment costs for a development will not be able to increase by the several
orders of magnitude required to meet carbon minimisation objectives. Instead, carbon
minimisation can be set as the objective, but with a limit on investment cost. The objective
function in Equation 6.6 employs the same ϵ constraint on investment cost as seen previously
in Section 6.1.3.

min ∑
n,x,t

(
E−

n,x,t × costcon
n,x,k2,t

)
s.t. ∑

n,x,y
yn,x × costy

n,x × TSF ≤ ϵ × costinv,baseline
k1

(6.6)

The Cambridge Pareto front given in Figure 6.10a shows a linear variation in the minimum
possible carbon emissions as the investment constraint changes. This is matched by a lack of
drastic changes in technology capacity. Capacities for the Cambridge case are identical when
comparing the cost-focussed developer and occupant objectives (Figure 6.11a vs 6.4a).

The Bangalore Pareto front shown in Figure 6.10b is not linear, but is certainly less convex
than other Pareto fronts for the case study. It is also apparent that the highest operation costs
are not associated with the lowest carbon emissions, and vice versa, unlike in Figure 6.3. In
fact, the operation costs increase significantly at ϵ = 0.31 Greater investment in DGs, StoreT
and CCHP occurs as the cost constraint is relaxed, but the centralised technologies are only
possible for ϵ values above 1.2. The introduction of a district system occurred at a similar
value of ϵ when cost minimisation was the objective (Figure 6.4b), but with investment in a
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Figure 6.8 Cost-carbon Pareto front following monetary cost minimisation of both case studies with
ϵ-constrained carbon emissions.
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Figure 6.9 Installed energy capacity following monetary cost minimisation of both case studies with
ϵ-constrained carbon emissions.

large-scale ECh taking preference over the CCHP. In both case studies, PV capacity increases
as the investment cost constraint is relaxed.
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Figure 6.10 Investment cost-carbon Pareto front following carbon emission minimisation of both case
studies with ϵ-constrained investment cost. Operation cost associated with each model run is given
by the marker colour.
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Figure 6.11 Installed energy capacity following carbon emission minimisation of both case studies
with ϵ-constrained investment cost.

6.1.7 Cost-focussed, district-constrained client

If there are no constraints on the provision of thermal demand, Chapter 5 concluded that
building-level solutions are optimal, in both a heating and a cooling district network. How-
ever, thermal demand can be completely met by a district system. The monetary impact
of this can be seen if using the constraint given in Equation 6.7. By decreasing the allowed
contribution of building-level thermal energy technologies, district systems must balance
system energy. It is likely that there is a step-change in cost when such a constraint is applied,
since purchasing energy centre technologies requires significant up-front costs. However, it
remains to be seen how costs change as the dependence on building-level solutions decreases.
For instance, if building-level technologies can only meet up to 80% of thermal demand, a
greater than 20% contribution from the centralised system may prove cost-optimal, given
that the energy centre has already been purchased.

∑
n,x′′,c,t

E+
n,x′′,c,t ≤ ϵ × ∑

n,x′,c,t
E+

n,x′,c,t (6.7)

Where x′ = thermal energy producing technology, x′′ = building-level thermal energy produ-
cing technology.

Each case study model was optimised with an increasingly strict requirement to not
meet thermal demand by building-level generation methods (e.g. NGBs or EChs). Optimal
investment decisions are given in Figure 6.12. In Cambridge, this leads to the introduction of
a CHP, coupled with a large thermal storage vessel. Due to the CHP electricity generation, the
need for GridE decreases. Building-level NGBs are maintained at a relatively large capacity,
to meet peak demand. As such, total NGB capacity does not reduce at the same rate as
the limit on the systemwide limit on their contribution to thermal demand. For instance,
at a 50% limit, the NGB capacity is not 50% of that seen where there is no limit (100%). A
fully centralised heat network also requires a small amount of NGB capacity at the energy
centre, to meet this same peak-load function. However, in Bangalore the electricity generating
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technologies remain undisturbed and the building-level EChs are replaced by the more
efficient EC-ECh. As the share of building-level provision drops below 30%, StoreT at the
energy centre becomes financially viable. As such, the EC-ECh has a higher capacity factor
at low building-level provision, with StoreT storing energy in time periods of low thermal
demand. A small CCHP is also added to the investment portfolio as soon as a centralised
system is required (90% building level share), but its capacity does not increase noticeably as
the energy centre becomes more prominent.

As the share of building-level provision decreases, not all buildings in the network are
provided for equally. Table 6.5 shows the change in thermal demand met by building-level
technologies at each node, as the limit is reduced on the sum of district thermal demand
met by building-level technologies. It can be seen, by the inconsistency in colour change
between rows, that some buildings in the network remain independent from the centralised
system longer than others. For instance, building B in the Bangalore district has 100%
of its demand met by a building-level ECh until the whole district is forced to meet less
than 70% of its demand from building-level technologies. Buildings J and F take the slack,
with consistently lower demand met by building-level EChs (table values) than the district
requirement (column values). The difference between buildings in the network is more
apparent in Cambridge; many buildings depend only on centralised heat (table values = 0)
well before the full system is required to do so (column value = 0). But certain buildings,
namely B02 and B07, depend relatively heavily on building-level NGBs up until the whole
system has to be centralised. Cross-over points are also apparent, such as A17, which depends
on its building-level NGB for more than 90% of its heat demand until the system is required
to meet more than 50% of its demand using centralised heat provision. At that point, the
building rapidly decreases its dependence on its own NGB.

The relative difference between nodes on the network is an expected result of their distance
from the energy centre. Indeed, the greater variation between nodes in the Cambridge district
is due to its larger size relative to the Bangalore district. The nodes in the D and C zones sign
up to the district network first. Nodes B01, B02, B03, B07, B08 are closer to the energy centre
than A01, A02, A05a, A08, if taking a straight line distance. However, road following for the
heat network leads to the two sets of nodes being equally distant from the energy centre
(∼1.2km). The furthest building from the energy centre is A08 (∼1.25km), but more than
50% of its heat demand is met by the centralised heat network well before the constraint on
system heat demand met by building-level technologies reaches 50%. This is primarily due to
its relatively low heat demand, e.g. compared to the preceding building in the network, A07.

The investment cost incurred by the centralised system is significant in the Cambridge
case; an order of magnitude increase in investment cost is required to meet 10% of the district
demand using a centralised system (Table 6.4a). This cost increases by a further two orders of
magnitude up to a fully centralised thermal system. Although there is also a high cost for
a fully centralised system in the Bangalore, the cost is almost proportional to the increased
prevalence of the centralised system (Table 6.4a). For instance, it costs 40% more to invest
in a system which meets 40% of district demand with a centralised system. The change in
carbon emissions and operation cost is not noticeable, relative to the change in investment
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cost. Nevertheless, carbon emissions decrease with a centralised system in Bangalore, but
increase with one in Cambridge.
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Figure 6.12 Installed energy capacity following monetary cost minimisation of both case studies with
a percentage limit set on the sum of district thermal demand which can be met by building-level
conventional technologies.

Table 6.4 Monetary cost and carbon emissions following monetary cost minimisation of both case
studies with a percentage limit set on the sum of district thermal demand which can be met by
building-level conventional technologies.

1.1x10⁷ 1.1x10⁷ 1.2x10⁷ 1.2x10⁷ 1.3x10⁷ 1.3x10⁷ 1.4x10⁷ 1.4x10⁷ 1.4x10⁷ 1.5x10⁷ 1.5x10⁷

7.4x10⁷ 7.2x10⁷ 7.3x10⁷ 7.4x10⁷ 7.5x10⁷ 7.5x10⁷ 7.4x10⁷ 7.4x10⁷ 7.4x10⁷ 7.3x10⁷ 7.1x10⁷

3.5x10⁸ 2.1x10⁸ 1.5x10⁸ 1.1x10⁸ 7.8x10⁷ 4.9x10⁷ 3.0x10⁷ 1.6x10⁷ 8.1x10⁶ 2.0x10⁶ 2.4x10⁵
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Table 6.5 Percentage share of thermal demand met by building-level thermal technologies in each
node of both case study districts. Each column gives results for a different limit on the district-wide
thermal demand that can be met by building-level technologies. Each row gives the percentage share
of thermal demand met by building-level technologies in a particular node. Lower values (dark green)
highlight the nodes which depend more heavily on centrally-produced thermal energy. Conversely,
higher values (light yellow) depend more heavily on building-level thermal energy. For the location
of each node, see Figure 5.5 on page 100.

0 10 20 30 40 50 60 70 80 90 100

0 36.8 66.6 66.6 66.6 66.7 66.7 66.7 66.9 67.1 100

0 19.1 67.8 68 68.1 68.1 68.1 68.2 68.2 68.5 100

0 19 37.7 49.7 49.7 49.7 49.8 49.9 50 55.6 100

0 0 0 18.9 47.2 47.3 47.4 47.4 47.5 56.8 100

0 31.5 64.3 83.9 87.4 87.4 87.4 87.4 87.5 87.6 100

0 0 4.8 44.1 55.5 55.5 55.5 55.5 55.6 58.1 100

0 20.1 41.2 71.3 94 94 94 94 94.1 94.1 100

0 33.7 47.2 47.3 47.3 47.3 47.5 47.5 47.5 56 100

0 0 0 13.3 46.2 46.3 46.3 46.3 46.5 57.2 100

0 0 28.1 46 46 46 46 46.1 46.2 58.3 100

0 0 0 5.2 50.4 50.5 50.5 50.5 50.7 56.8 100

0 0 0 0 36.2 67.7 67.7 67.8 67.9 68.2 100

0 2.8 9.6 51.2 51.2 51.2 51.3 51.3 51.4 58.1 100

0 15.3 38.8 56.9 56.9 56.9 56.9 56.9 57 58.6 100

0 18.9 21.8 46.6 46.6 46.6 46.6 46.6 47 55.8 100

0 0 0 0 0 56.2 56.2 56.2 56.3 57.5 100

0 3.2 10.5 29.1 59.6 92.9 92.9 92.9 93 93 100

0 4.6 13.4 29.6 49.2 49.2 49.3 49.4 49.5 55.4 100

0 0 0 0 18.5 47.7 47.9 47.9 47.9 57.4 100
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0 0 0 0 0.1 65.2 65.2 65.2 65.4 65.8 100

0 0 0 0 0 0.4 52.7 52.8 52.9 56.7 100

0 0 0 0 4.4 11.1 42.2 75.7 75.7 76.4 100

0 42.5 69.1 70.3 70.4 70.4 70.4 70.5 70.6 71 100

0 28.6 46.2 46.3 46.3 46.3 46.3 46.4 46.7 55.3 100

0 0 0 0 0 0 0 5 71.7 72.3 100

0 0 0 0 0 0 0 0 0 55.8 100

0 0 0 0 0 0 4.1 20.1 55.9 83.6 100
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0 0 0 0 0 47.6 47.7 47.7 47.7 57.6 100

0 0 0 0 0 0 0 40.4 64.4 64.4 100

0 0 0 0 0 0 0 0 0 23.9 100

A01

A02

A03

A04

A05a

A05b

A07

A08

A09a

A09b

A10

A10b

A11

A12

A13

A14

A17

A18

A19

A20

A21

A22

B01

B02

B04

B05a

B06

B07

B08

C01

C02

C04

C07a

C07b

C08

D 01

D 02

D 04

D 06 0 0 0 0 0 0 0 0 0 23.5 100

N
o

d
es

% share of heat demand met by building-level NGB

(a) Cambridge, UK.

% share of cooling demand met by building-level ECh

0 10 20 30 40 50 60 70 80 90 100

0 21.5 27.3 50.1 62.9 75.4 79.3 84.9 100 100 100

0 23.2 36.2 57.7 71.8 78.1 82.7 100 100 100 100

0 19.6 24.8 38.8 55.7 68.8 75.3 80.6 100 100 100

0 21.4 27.2 50.2 62.7 75.3 78.9 84.8 100 100 100

0 4.7 20 24.5 31.7 49.5 57.8 69.4 77.1 89.7 100

0 3.5 16.9 23.8 26.5 38.6 50.7 59.9 73.5 81.3 100

0 14.8 23.5 28.9 48.5 59.6 70.1 76.9 83.1 100 100

0 13.8 23.4 28.9 47.6 58.7 69.9 76.8 82.9 100 100

0 22 27.6 52 64 75.7 79.9 89.2 100 100 100

0 2.4 12.2 22.2 25 31.5 43.1 55.9 69 78.1 100

A

B

C

D

E

F

G

H

I

J

K 0 13.6 23.1 27.8 44.7 58.6 68.8 76.3 81.8 100 100

N
o

d
es

(b) Bangalore, India.



160 | Whose objective is it anyway?

6.1.8 Risk-aware client

Reformulations of the objective function have hitherto remained deterministic. It was shown
in Chapter 5 that deterministic models suffer from instability when subjected to unexpec-
ted future demand profiles and power interruptions. To improve system robustness, SO
methodology is extended in this chapter to reduce the risk of future scenarios incurring high
financial penalties and to prevent the worst-case carbon emissions from being realised. A cost
of carbon baseline model using only the mean demand scenario is used for comparison. Risk-
awareness has only been introduced to the Bangalore case study, to explore the possibility of
its introduction when carbon emissions are accounted for in a district.

Objective function formulation

The risk-aware objective function when minimising monetary cost is given again in
Equation 6.8. Each scenario is probabilistically weighted, with the highest risk scenarios
further penalised using the conditional value at risk (CVaR) component. When mitigating
risk for the carbon-focussed client, only the VaR is scenario-independent in the objective
function (Equation 6.9). Investment decisions must still be made to satisfy all scenarios, but, in
agreement with the deterministic objective function, the embodied carbon of the investment
is not a consideration. Scenarios which may incur high carbon emissions can be avoided
by imposing a monetary cost on carbon emissions (i.e. the cost of carbon). By including
only the cost of carbon within the CVaR component of Equation 6.10, system cost can be
minimised across multiple scenarios while ensuring high emission risk remains manageable.
It would be feasible in this objective function to use the carbon emissions directly in the CVaR
component, but using the cost of carbon allows us to appropriately scale the emissions to
match the magnitude of monetary costs. A 9.49 INR/kgCO2 cost of carbon has been applied,
representing the higher end of possible costs given in Table 6.2.
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Scenario reduction
As discussed in Section 5.1.2, reduced scenarios are selected using the objective function

values from optimising each of the 500 scenarios independently. Figure 6.13 shows the
comparison of applying a minimum cost and a minimum carbon objective function to each of
the scenarios. There is a clear correlation between the two: a scenario which incurs a higher
optimal cost will incur higher optimal carbon emissions. In selecting reduced scenarios, the
scenarios in Figure 6.13 are subset horizontally in preparation for cost minimisation SO and
vertically in preparation for carbon minimisation SO. For cost minimisation SO including a
cost of carbon, scenario reduction (SR) is applied to the sum of normalised cost and carbon
minimisation OFVs of each scenario.
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(b) SR using min(carbon) OFV.
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(c) SR using normalised sum of min(cost) and min(carbon) OFVs.

Figure 6.13 Cost-optimal vs. carbon-optimal OFV for 500 generated scenarios in the Bangalore case
study. The same scatter is shown overlaid with application of SR to (a) cost minimisation OFVs, (b)
carbon emissions minimisation OFVs and (c) sum of normalised cost and carbon minimisation OFVs.
Reduced scenarios, chosen to represent the full scenario set, are highlighted with a thick black outline.
All scenarios represented by a particular reduced scenario have the same marker colour.
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Scenario optimisation
The optimal investment portfolios and average annual energy production following SO

are given in Figure 6.14. As found in Chapter 5, the introduction of several scenarios in the
objective function leads to an increase in technology capacity and a decrease in expected
capacity factor (annual energy production or technology capacity). Increasing capacity is
straightforward in the carbon minimisation SO model since there is no carbon cost associated
with the additional investment. Hence, PV and ECh capacity doubles. Conversely, when cost
is part of the objective function, ECh capacity increases by 50% but PV capacity reduces.

Introducing carbon emissions into the cost minimisation objective, using a cost of carbon,
leads to consistent investment in a centralised CCHP. This occurs in the baseline, single
scenario model and the SO models. The capacity is low when neutral to risk, increasing as
the risk increases. Although the technology capacities would suggest that the CCHP only
contributes a small amount to meeting demand, the low electrical efficiency and subsequent
high cooling coefficient of performance (COP) of 2.1 leads to it contributing to most of the
cooling demand at high levels of risk aversion. Cooling demand is met similarly when
optimising the carbon minimisation SO model, but there is a stark difference in the choice of
electricity generator, with cost concerns leading to heavy dependence on GridE instead of
PVs and DGs.

Accounting for the risk of high carbon emissions in cost minimisation SO leads to inev-
itably increased monetary costs. Figure 6.15a shows that not only does the cost increases
with risk aversion, but the standard deviation of realisable costs also increases. Conversely,
increased risk aversion leads to lower emitted carbon and a lower standard deviation on
the distribution of realisable carbon emissions (Figure 6.15b). It is possible to reduce carbon
emissions to correspond with the tail carbon emissions realised in the 500 independently
optimised scenarios without significantly increasing system monetary cost. This would
require a risk aversion of β = 1. Arguably, a risk aversion of β = 4 offers a good compromise as
it is closer to the β = 8 carbon savings whilst sitting centrally between the β = 1 and β = 8 cost
increase. However, through risk aversion alone it is not possible to reach the system carbon
emissions achieved when setting an ϵ constraint on investment costs. The 9.49 INR/kgCO2

cost of carbon used here realised system carbon emissions closer to 22 million kgCO2 when
considering the cost of carbon in a single-scenario model (Figure 6.8b).
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Figure 6.14 Comparison of optimal technology capacity and annual energy production for Bangalore
case study baseline and SO models.
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Figure 6.15 Distribution of total system monetary cost and carbon emissions resulting from minimising
cost (including the cost of carbon), using risk-neutral SO and risk-averse SO Bangalore case study
models. Comparison is made to risk-unaware optimisation on all 500 independent scenarios and
risk-neutral SO with only cost minimisation in the objective. Data points from which the distributions
are constructed are identified.
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6.2 Out-of-sample tests

The investment portfolios resulting from different decision-maker objectives applied to the
Bangalore case study district have been tested in this chapter against the same OOS tests as
used in Chapter 5. Each test is a rolling horizon optimisation over a demand profile from 500
generated demand scenarios (see Section 5.4 for more information). This section begins by
assessing the inadvertent impact of different single scenario objectives on operational unmet
demand. The impact of incorporating demand scenarios into the objective function using both
risk-neutral and risk-averse SO is then assessed, to understand whether a cost-carbon-risk
objective is viable.

6.2.1 Single scenario models

Between single scenario models, there tends to be little variation in unmet demand, certainly
when compared to the orders of magnitude variation seen between some models in the
previous chapter. However, variation does exist. For instance, the imposition of a lower in-
vestment cost leads to a lower level of unmet electricity demand, when minimising monetary
cost (Upper trace in Figure 6.16). The optimal investment portfolio following minimisation of
carbon emissions with ϵ-constrained investment costs (Figure 6.17) proves more robust to
unmet demand than the same ϵ constraint applied to a cost minimisation model (Figure 6.16).
This may be explained by the increased StoreT capacity in the former technology portfolio,
alongside the mix of DG and GridE capacity to meet electricity demand. Trends such as this
are hardly strict, however, given that the baseline cost model (ϵ = 1) deviates considerably
in unmet demand from its nearest neighbours, usually resulting in greater unmet demand.
Indeed, in Figures 6.16 and 6.19, the ϵ = 1 model incurs a greater unmet cooling demand
when compared to other ϵ values. In Figure 6.17, the same poor performance is seen for
unmet electricity demand.

Generally, there is lower unmet cooling demand in a district with more dependence on
centralised cooling (Lower trace in Figure 6.18) and lower carbon emissions (Lower trace in
Figure 6.19). This benefit is realised by the existence of StoreT capacity, which is not chosen
in the baseline cost model. However, there is an increase in unmet electricity demand as
carbon emissions reduce (Upper trace in Figure 6.19), indicating the lack of flexibility in
the DGs chosen to meet most of the electricity demand in the carbon-focussed client model.
Ultimately, there is a perceptible variation in unmet demand depending on the objective of
the decision maker, but it cannot be predicted prior to running OOS tests.
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Figure 6.16 Distribution of unmet cooling and electricity demand realised when running OOS tests on
the result of cost minimisation with ϵ-constrained investment cost in the Bangalore case study district.
Values adjacent to distributions refer to their mean.
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Figure 6.17 Distribution of unmet cooling and electricity demand realised when running OOS tests
on the result of carbon minimisation with ϵ-constrained investment cost in the Bangalore case study
district. Values adjacent to distributions refer to their mean.
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Figure 6.18 Distribution of unmet cooling and electricity demand realised when running OOS tests on
the result of cost minimisation with decreasing allowed share of cooling demand met by EChs in the
Bangalore case study district. Values adjacent to distributions refer to their mean.
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Figure 6.19 Distribution of unmet cooling and electricity demand realised when running OOS tests
on the result of cost minimisation with ϵ-constrained carbon emissions in the Bangalore case study
district. Values adjacent to distributions refer to their mean.
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6.2.2 Scenario optimisation models

As expected, based on the results from Chapter 5, the introduction of demand scenarios
inherent in the objective function of a model does drastically improve robustness to unmet
demand. The baseline models are all likely to incur a one or two magnitude greater quantity
of unmet demand than the baseline models. There is a similar difference between risk-neutral
SO models, with the carbon minimisation objective leading to a lower unmet cooling demand
than the cost minimisation objective, and vice versa for unmet electricity demand. But, the
carbon minimisation objective SO model has a larger standard deviation from the 500 OOS
tests than any other model seen in this chapter, or the previous chapter. Indeed, in the worst
case OOS test, the SO optimal investment would lead to greater unmet electricity demand
than some of the baseline models. The probability is particularly low, but it is still a possibility
that is not exhibited in the other SO model results.

Applying a cost of carbon to the cost minimisation objective leads to an unmet demand
range that sits between the cost and carbon minimisation results. The range of unmet demand
remains low, unlike with the carbon minimisation model. Updating the CVaR risk measure
to be the cost and carbon does aid in reducing the risk, compared to the risk-neutral case
(Figure 6.21). Although this does not lead to the lowest unmet cooling or electricity demand,
it is possible to avoid a large swing in unmet demand between the two energy types by
incorporating the cost of carbon.
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Figure 6.20 Distribution of unmet cooling and electricity demand realised when running OOS tests on
the result of baseline, single scenario optimisation and risk-neutral, 10-scenario SO in the Bangalore
case study district. CoC = cost of carbon, β = risk aversion measure. Values adjacent to distributions
refer to their mean.
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Figure 6.21 Distribution of unmet cooling and electricity demand realised when running OOS tests
on the result of 10-scenario risk-neutral SO and risk-averse SO in the Bangalore case study district.
Risk-averse models consider the cost of carbon in the CVaR component of the objective function. CoC
= cost of carbon, β = risk aversion measure. Values adjacent to distributions refer to their mean.

6.3 Discussion

It is clearly difficult to justify the monetary expense involved in implementing centralised
energy systems. But, such systems do exist and are regularly considered by district master-
planners. Understanding the impact of decision-maker constraints is therefore important. For
instance, investment limits may prove beneficial, if those limits exceed the investment cost
given by the balanced optimal solution. In the UK context, this would allow a marginally
increased prevalence of PV installations. Only by applying constraints to enforce the con-
struction of a centralised system are they installed in favour of building-level technologies
in the UK. Enforcement may mean a carbon objective, a cost of carbon, or a strict limit on
building-level energy provision. If any enforcements are implemented, investment costs
will increase by at least an order of magnitude. In the Bangalore context, centralised cooling
provision becomes viable for a smaller increase in investment cost, presenting a lower barrier
to a decision maker being influenced by auxiliary incentives, such as the minimisation of
carbon emissions.

A cost of carbon may be a feasible mechanism to incentivise decision makers to move
towards technologies with lower levels of CO2 emissions. Yet, more than half of carbon
emission savings would not be realised using the current expected best-case cost of carbon in
2050. In Bangalore, if the ‘politically’ viable cost of carbon of 5 USD/tCO2 (Hourcade et al.,
2017) were to be applied, it would not be financially worthwhile to make any changes to
the cost-optimal system. As such, it is unlikely that a cost of carbon will affect district level
decision makers.

A primary reason to push for district systems is their perceived lower emissions. Indeed,
the results in this chapter agree: the lowest carbon systems are certainly those which make
most use of centralised energy generation and/or storage. But, this is due to the lack of a
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barrier in the model associated with technology investment. A greater number of technologies
are required to be linked together to meet the lowest carbon emission objective. This raises
a number of concerns not addressed in this thesis. First, maintenance requirements will
be necessarily greater. Second, if the embodied carbon of technologies could be reliably
calculated, it is likely that they would not only increase linearly with technology capacity, but
would also have some fixed value associated with the existence of a technology, no matter
the size. Third, the need to improve control systems increases. Additionally, in Bangalore, the
use of a DG increases markedly at low carbon emission levels, but this ignores the particulate
emissions which would inevitably impact health of those in the immediate vicinity. The same
can be said for a biomass fired CCHP (Omu et al., 2015).

If a centralised system is to be installed, it is also important to understand whether it is
worth connecting the whole district. Results from the Cambridge case point to either ignoring
some buildings, or finding ways to reach those buildings which does not require the network
to follow an existing road network. Around a third of the buildings resist full connection
to the grid as the district heat demand is better met by centralised generation. Thus, it is
unlikely to be worthwhile to extend the network throughout the district, particularly as the
carbon emissions do not markedly reduce.

Increasing centralised energy provision does provide the benefit of decreasing the unmet
demand in the Bangalore district, when running OOS tests. The greater flexibility provided
by the installed StoreT leads to a more robust system for meeting cooling demand. But,
there is no marked benefit in the amount of electricity demand that is met. The latter is also
probably the most important demand to be met, corresponding to a complete inability to
conduct office work, while unmet cooling demand corresponds only to occupant discomfort.
Of course, occupant discomfort can also lead to the inability to conduct office work, but it is
more gradual.

Increasing the allowable system investment cost does not automatically confer an im-
provement in system robustness to unmet demand. But, it seems from the results of both sets
of ϵ-constrained investment cost OOS test results that any investment portfolio is better than
the balanced cost-optimal option. The baseline cost model has much higher unmet electricity
demand when minimising carbon and higher unmet cooling demand when minimising cost,
compared to systems with both lower and higher associated investment cost. From an unmet
electricity demand perspective, the completely conventional system achieved by investment
cost minimisation would be ideal. Certainly, lower investment cost systems which do not
inherently account for demand fare better when unexpected demand is met.

Designing a system to minimise carbon would be the least helpful in ensuring system
robustness, as OOS tests indicate a high expected unmet electricity demand relative to all
other designs. Moreover, there are some worst-case OOS scenarios which would lead to the
system failing, causing unmet demand orders of magnitude greater than the mean. These
outlier scenarios are unique to this particular objective. An alternative compromise may
be to account for carbon emissions in the cost minimisation objective. This would require
a cost of carbon greater than the politically viable cost for India, by at least an order of
magnitude. Nevertheless, if put in place, a 9.49 INR/kgCO2 cost of carbon would lead to a
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system which is more robust to unmet demand than that achieved by optimising either cost
or carbon individually, whilst also reducing carbon emissions compared to the cost-optimal
design. Minimising the cost of carbon alongside other monetary costs would result in the
use of a centralised biomass fuelled CCHP to meet most cooling demand, but would still
require heavy dependence on the national grid for electricity. Of course, such dependence
on grid electricity would cause significant system reliability issues if allowing electricity
interruptions to be considered, as done previously in Section 5.5.2. Only carbon emission
minimisation leads to a system independent of the national electricity network. Converging
on an investment which adds electrical grid interruptions to the objective function is a natural
extension to this study which would lead to a system which balances cost, carbon, demand
uncertainty, and supply instability.
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6.4 Conclusions

Investment decisions do change when different objectives are considered for the same case
study district. In this chapter the traditional objective of a minimised balanced monetary cost
has been compared to one where varying importance is applied to investment and operation
monetary cost, carbon emissions and monetary costs, and dependence on the centralised
generation of thermal energy. The minimisation of balanced monetary cost inevitably leads
to the selection of conventional, building-level technologies. Introducing new objectives can
change this, although the impact may only be small.

In Cambridge, the combination of an natural gas boiler (NGB) to meet heat demand
and national grid electricity (GridE) to meet electricity demand is not only commonplace in
buildings today, but is optimal from a cost perspective. Increasing the limit on investment
costs, or reducing the limit on carbon emissions, initially serves to increase solar photovoltaic
panel (PV) capacity. Subsequent investment in a solar thermal panel (ST) and thermal energy
storage (StoreT) occurs before centralised energy generation can be deemed to be viable.
Once investment in an energy centre has occurred, investment costs will have increased by
several orders of magnitude. A 10% reduction in carbon emissions could be realised by the
introduction of a 0.07 GBP/kgCO2 cost of carbon, but would require the introduction of costs
currently at the upper extreme of those expected to be imposed.

In Bangalore, the cost-optimal solution is similar: an electric chiller (ECh) to meet cooling
demand is coupled with a GridE connection to meet electricity demand. Unlike the Cam-
bridge case, due to the differences in costs and climate, PV is also central to a cost-optimal
solution in Bangalore. However, this dependence on PV rapidly dwindles if investment costs
are increasingly constrained. The district system is cheaper to implement than in Cambridge,
leading to the use of a centralised energy centre in many more situations. Due to the current
emissions factor associated with dependence on GridE, building-level diesel generators (DGs)
are the carbon-optimal method to meet electricity demand. Similar to the Cambridge case
study, a 10% reduction in carbon emissions could be realised within the range of carbon costs
that could feasibly be imposed. But, a much lower ‘politically’ viable cost of carbon would
have no impact on the system design.

There are variations in the ability of different investment decisions to meet unexpected
demand scenarios. Most of these variations are unintended, as none of the objectives are
directed towards mitigating demand uncertainty. Unmet cooling demand can be reduced
if using a centralised energy centre. However, this can be coupled with an increase in
unmet electricity demand, probably a more important energy carrier to ensure that is met
in office buildings. Both electricity and unmet demand are reduced by the incorporation of
scenario optimisation (SO), a conclusion also drawn in chapter 5. The incorporation of carbon
emissions reduction in the SO objective produces a cost-carbon-risk minimisation function
which is promising as a method of increasing system robustness to unmet demand, excessive
carbon emissions and excessive operational costs.





Chapter 7

Conclusions

This research aimed to improve methods of district energy system optimisation to make it
practical as a tool in the decision-making process. This has been achieved by the completion
of three methodological enhancements and the development of a modelling framework. The
development of the Calliope framework is central to the work undertaken throughout this
thesis. It is a mixed integer linear programming (MILP) framework, openly available under
the Apache 2.0 licence, which offers powerful processes to prepare a model for optimisation
and to analyse the results. Calliope can be used to answer questions about optimal technology
investment capacity and operation for energy systems in which any number of locations,
energy carriers, and time scales exist. An up-to-date Python toolchain ensures that models
can be defined in an easy to read manner, data can be processed efficiently and shared
seamlessly, and visualisations can be interactive. Moreover, mature MILP algorithms are
available within the framework, either through commercial solvers such asBM ILOG CPLEX
or openly available solvers such as GLPK. Calliope was originally developed to address
questions on national-scale energy infrastructure and has been extended in this research to
enable district-scale energy systems to be effectively modelled. Additionally, its internal and
external structure was updated to increase its accessibility to users outside the academic
community.

A review of the literature which encompasses the current state-of-the-art in district energy
system optimisation highlighted shortcomings which limit the viability of using optimisation
in practical district design. Each methodological enhancement detailed in this thesis was
aimed at addressing these shortcomings. First, Chapter 4 examined how technologies are
represented in models. Most importantly, the impact of technology part-load consumption
curve representation on solution time, optimal operation schedule and capacity investment
were tested. The metaheuristic approach to an energy system model may offer a more
accurate representation of reality, but time is required to reach a solution. And, even though
more accurate, it may not be globally optimal. Piecewise linearisation was demonstrated
as an effective middle ground between the nonlinear technology part-load curves and the
use of a rated efficiency. Instead of needing a nonlinear representation of a characteristic, a
combination of linear pieces are described along a piecewise curve. It offers a reasonable
fit to nonlinear data whilst allowing a much quicker, MILP model to be implemented. This
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comparison has not previously been quantified in energy system optimisation. In fact, the
impact of simplification from metaheuristic to MILP models is too often ignored. Further
investigation showed that advancements on traditional piecewise linearisation are possible,
improving both the accuracy of results and the solution time of MILP models. By automating
the process, it is possible for a decision-maker to only supply nonlinear curves to Calliope.
Conversion of nonlinearities to viable piecewise curves would be undertaken by a pre-
processing step, thus preparing the curves for application in MILP modelling. However, an
increase in solution time should be expected. This cannot be avoided and may be exacerbated
by the particular model being solved. If the possibility of part-load operation is near-optimal,
convergence on a solution can take time. Indeed, this concern led to the stand-alone analysis
of chapter 4; part-load characteristics were not extended to chapters 5 or 6.

Chapter 5 considered the incorporation of uncertainty in linear modelling. Using a
three-step method to generate, reduce, and optimise scenarios of building demand, more
robust investment portfolios were achieved. Unlike previous research in the field of scenario
optimisation (SO), this research used historical demand data to produce multidimensional
probability density functions, which were sampled to generate demand scenarios. Addition-
ally, the choice of method to select scenarios, namely, by reducing the probability distance
between independently optimal objective function values (OFVs), is an enhancement on
existing approaches for district energy scenario optimisation. It thus proved straightforward
to prepare a 10 scenario SO model from 500 generated demand scenarios. The result of the
three-step method was compared to a single scenario model representing the typical ap-
proach to energy systems modelling based on mean demand data. SO increased the required
technology capacity in both case studies, particularly for conventional energy technologies
such as building-level natural gas boilers (NGBs) and electric chillers (EChs). In Bangalore,
mean model solar photovoltaic panel (PV) capacity was reduced when accounting for uncer-
tainty, in favour of greater conventional technology capacity. While this reduced investment
costs, it increased the expected operational costs. In Cambridge, storage capacity was also
introduced, to provide greater flexibility for an increase in investment cost. The investment
portfolio from both case studies proved to be significantly more robust to unmet demand
than the mean model. This was tested using out-of-sample (OOS) scenarios, which operated
on a rolling horizon to expose the fixed technology capacities to each of the 500 demand
scenarios in parallel. A two order of magnitude reduction in unmet thermal and electricity
demand was achieved using SO results compared to those from the mean models. The
investment portfolios from the independently optimal models with highest OFV and total
annual demand were also tested, achieving improvements on the mean models. However,
this still leads to an order of magnitude greater unmet demand than the SO results.

Enhancements to SO were also explored. Particularly, the conditional value at risk (CVaR)
measure was applied to models to help mitigate the worst-case realisation of costs. This
served to further reduce unmet demand and the highest expected cost that could be incurred
in the most extreme scenario(s). But it also caused the overall expected cost of the system
to increase. The CVaR measure was further adapted to consider the dependence of the
Bangalore case study district on the national grid electricity (GridE). Unlike the Cambridge
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case study, Bangalore districts will be expected to withstand regular interruptions to power.
Low system resilience was shown for the mean and standard SO models when exposing
them to unexpected power interruptions as part of rolling horizon OOS tests. Penalising the
dependence on the GridE led to the district depending heavily on diesel generators (DGs) for
electricity provision. It also led to some use of the previously unused district-scale centralised
network, through investment in some biomass fuelled CCHP (B-CCHP) capacity. This led to
a marked reduction in unmet demand when both demand scenarios and power interruptions
were included in the OOS tests. But, an approximately 50% increase in investment cost is
incurred to ensure this robustness. Intermittent GridE was also added to the mean model,
by setting its availability to zero in particular hours of the day. This was not as effective
at reducing unmet demand as the SO method, but was similarly costly. Finally, carbon
emissions were added to the CVaR measure in Chapter 6. Combining monetary cost, carbon
emissions, and demand uncertainty in the objective function led to the design of a system
which aimed to balance each component. In this system, there is an increased dependence
on storage technologies and an equal increase in DG and B-CCHP capacity. The capacity of
these new technologies is small, but leads to an expected reduction in carbon emissions of
10% for a corresponding increase in monetary cost of 10%. Using carbon emissions as the
risk measure reduces the standard deviation of emissions across the 10 scenarios used in
SO, but increases the standard deviation of monetary cost: it is not possible to completely
balance the two competing components. The unmet demand from OOS tests is balanced,
however. It occupies a lower range of unmet electricity demand and unmet cooling demand
when compared to the result of minimising only for carbon emissions and monetary cost,
respectively.

As well as updating the SO objective function, Chapter 6 investigates the impact of
objective on the Cambridge and Bangalore mean models. The typical single scenario objective
function, which balances the annualised investment cost with operational costs, does not
necessarily reflect the decision-making process; different decision makers may have different
objectives. Therefore, eight different objectives are modelled, including: the cost-focussed
developer or occupant, who prefers to minimise one of investment or operation cost; the
carbon-constrained decision maker, who may want to minimise cost, but is obliged to meet
carbon emission reduction targets, and; the district-focussed client, whose aim is to implement
a district system, irrespective of the monetary cost involved. As expected, investment
decisions change as each decision maker is considered and consequently there are large
variations in possible system costs. Particularly in the Cambridge case study, energy provision
centralised at the district level is not optimal unless it is forced by a constraint which requires
it or by the need to have extremely low carbon emissions. In either case, investment cost
increases by several orders of magnitude and is unlikely to be overcome. Compromises could
be achieved by investment in PV and solar thermal panel (ST) technologies, to at least reduce
carbon emissions. In Bangalore, a relatively small increase in the limit on investment cost
would begin to see a system centralised at the district level being deployed, which could
make it viable to introduce district cooling networks in the city.
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Each of the methodological steps taken in this research were aimed at practical optim-
isation of district energy systems. This has led to further understanding of the impact of
model simplification, demand uncertainty, and objective. Through implementation of this
updated Calliope framework, a decision maker can be confident in their understanding
of model results, and the limitations by which they are constrained. Furthermore, extens-
ible and transparent processes have been implemented to allow complex system data to
be applied to a model. A modeller need not decide the best way to piecewise linearise a
nonlinear characteristic curve or to generate scenarios from stochastic datasets. Instead,
the workflow developed in this research is capable of applying state-of-the-art methods to
pre-process complex data in preparation for linear optimisation. This includes breakpoint
allocation to minimise linearisation error and allow for the use of convex bounding sets
(CBS); scenario generation from historical data using kernel density estimation (KDE) and
5-fold cross-validation, if necessary; and scenario reduction using the fast-forward method
applied to independently optimal OFVs. Ex-ante and ex-post error quantification methods
are then available to understand the limitations of simplifying the input data, but to also
quantify the benefit of using more complex methods than those typical to linear district
energy optimisation models. This has been achieved alongside extensibility and transparency.
As an openly available, easy to use framework, Calliope can be further developed to meet
bespoke decision-maker requirements without losing any of the functionality developed
prior to, or during this research.

7.1 Limitations and further work

MILP models are consistently limited by their need to simplify parameters and constraints
to ensure a model is tractable. This thesis has introduced a number of methods to simplify
intelligently and to better understand the impact of those simplifications. However, further
work is still required. MILP models can be best simplified in two ways: reducing the size
of dimensions and reducing the number of binary/integer variables. The time dimension
is often reduced first. Indeed, the most aggressive simplification made in this research was
timeseries aggregation. Spatial aggregation is understudied, however, indicating a clear
avenue of further research into the most effective methods to reduce the number of demand
nodes without losing understanding of the district network. Although fewer technologies
would also simplify the model, the purpose of optimising district energy systems is to decide
between a wide variety of different, often interconnected technologies. Therefore, they cannot
be removed from the model. Their representation could be simplified, however, by removing
more binary and integer variables. In this thesis, the use of CBS instead of special order set
constraint of type 2 (SOS2) in piecewise linearisation was one method given to reduce the
number of binary variables in the model. Technology purchase binary variables were not
considered for removal, even though some models failed to converge as a result of their
inclusion. They are deemed a necessary component in district energy system optimisation
since they place a fixed charge on the installation of technologies, irrespective of their capacity.
This emulates the construction of an energy centre, ground work for pipelines, or the cost of
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using some building floor area for services. Circumventing their use requires further research,
including the use of variable relaxation techniques and multi-stage MILP modelling.

A concern raised from analysing the literature at the beginning of this thesis was that
of model data validity. Key to improving on the inability to validate data has been the
transparency of this research, leading to public availability of case studies 3 (Cambridge)1

and 4 (Bangalore)2. Yet, there is more to be done. Technology characteristic curves should
be validated using operational data of existing facilities. The direct use of such data would
ensure that the reality of technology operation is inherent in the model, including the complex
interaction of characteristics which may otherwise be ignored. Technology costs should be
validated against as-built costs of district systems. This research improved on existing studies
by using an industry standard reference for costs in the UK case studies (AECOM, 2015). But,
this still ignores the uncertainty in realised costs and is limited to UK studies.

Further work on data validation would inevitably lead to an increase in stochastic input
parameters. This research concentrated on demand and power interruption uncertainty. But,
it is clear that every parameter can be described by a probability density function (PDF) of
some kind. For most, it is unlikely that datasets exist from which PDFs can be developed
following the methods used in this thesis. Thus, synonymous with validation concerns,
further data collection is required. Additionally, to incorporate several sources of uncertainty
into a single model requires more sophisticated scenario selection methods. The number of
conceivable, unique scenarios increases considerably with the introduction of new uncertain
parameters. Thus, scenario generation and reduction techniques must be developed to best
handle greater volumes of data, much of which will be interconnected.

Finally, a near-term goal following this research is the inclusion of methods into the core
Calliope offering. The process of introducing new functionality into the stable version of any
software requires robust testing, complete documentation, and updates to the user interface
that make its use clear and simple. In parallel with the stable Calliope software, piecewise
linearisation and scenario optimisation techniques have been developed. They have been
developed in the open and are usable for anyone wishing to validate the results of this
research or use them for their own analysis. However, the user-facing functionality requires
further development to ensure the process is generalised for application to energy systems of
all scales before incorporation into a stable release. The inclusion of this functionality will
position Calliope as a practical tool for decision makers and will provide the foundation for
further development of methods within the field of energy system optimisation.

1https://github.com/brynpickering/cambridge-calliope
2https://github.com/brynpickering/bangalore-calliope

https://github.com/brynpickering/cambridge-calliope
https://github.com/brynpickering/bangalore-calliope
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Appendix A

State-of-the-art district energy system
MILP optimisation models

Table A.1 Model reference table.

Model number Model name Citation
1 - (Garcia and Weisser, 2006)
2 - (Söderman and Pettersson, 2006)
3 - (Söderman, 2007)
4 ICS-EM (Cai et al., 2009)
5 - (Hawkes and Leach, 2009)
6 SynCity (Keirstead et al., 2010)
7 - (Ren et al., 2010)
8 DESDOP (Weber and Shah, 2011)
9 - (Christidis et al., 2012)

10 - (Mehleri et al., 2012)
11 - (Buoro et al., 2013)
12 - (Hoke et al., 2013)
13 DENO (Omu et al., 2013)
14 - (Voll et al., 2013)
15 - (Bischi et al., 2014)
16 - (Buoro et al., 2014)
17 - (Capuder and Mancarella, 2014)
18 - (Fazlollahi et al., 2014)
19 - (Haikarainen et al., 2014)
20 RESCOM (Jennings et al., 2014)
21 - (Koltsaklis et al., 2014)
22 - (Pazouki et al., 2014)
23 - (Wakui et al., 2014)
24 - (Wouters et al., 2014)
25 - (Yokoyama et al., 2014)
26 XEMS13 (Carpaneto et al., 2015)
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Model number Model name Citation
27 - (Khir and Haouari, 2015)
28 DENO (Omu et al., 2015)
29 - (Orehounig et al., 2015)
30 eSynthesis (Voll et al., 2015)
31 DESDOP (Voll et al., 2015)
32 RESCOM (Voll et al., 2015)
33 - (Wang et al., 2015)
34 - (Wouters et al., 2015)
35 - (Zhang et al., 2015a)
36 - (Akbari et al., 2016)
37 - (Ameri and Besharati, 2016)
38 - (Ceseña et al., 2016)
39 - (Chen et al., 2016)
40 - (Farzaneh et al., 2016)
41 DeST (Li et al., 2016a)
42 - (Morvaj et al., 2016)
43 - (Pazouki and Haghifam, 2016)
44 - (Yazdanie et al., 2016)
45 - (Yokoyama et al., 2016)
46 - (Al Rafea et al., 2017)
47 ETEM-SG (Babonneau et al., 2017)
48 - (Good and Mancarella, 2017)
49 - (Majewski et al., 2017)
50 - (Reddy, 2017)
51 DGOPT (Tanaka et al., 2017)
52 - (Vahid-Pakdel et al., 2017)
53 - (Bucciarelli et al., 2018)
54 - (Cesena and Mancarella, 2018)
55 - (Gabrielli et al., 2018)
56 - (Kotzur et al., 2018a; Kotzur et al., 2018b)
57 - (Mavromatidis et al., 2018c)
58 - (Mavromatidis et al., 2018a; Mavromatidis et al., 2018b)
59 - (Zheng et al., 2018)
60 - (Zhou et al., 2018)
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Table A.2 Glossary of columnwise abbreviations used in Table A.3.

Column Format Explanation of abbreviations
Resolution

Temporal #A-#B/#C, where A = resolution, B = time
horizon, C = timeseries aggregation (if
applicable)

H = hour(s), min = minute(s), D = days(s), Y =
year(s), P = period(s) (usually changeable
number of hours), PL = peak load, TD = typical
day(s), TW = typical week(s), TS = typical
season(s)

Spatial #A-#B-C, where A = number of nodes, B =
number of buildings represented by nodes (if
applicable), C = district type

N = node, B = building, D = geographically
located district, A = abstract district, +N =
district network is described

Optimisation
Mode - O = operation, P = planning

Method A (B), where A is either MILP or LP and B is the
software used (if known)

-

Obj(ective) A (B), where A is the primary objective and B
are auxiliary objectives which are scaled to A
with a weighting factor (e.g. cost of carbon)

£ = cost, CO2 = carbon emissions, η =
energy/efficiency

Model elements
Technologies If A-B, A = fuel type, B = technology Many technologies link to the main thesis

acronym list. NG = natural gas, O = oil, BM =
biomass, W = wood, B = boiler, G = generator,
DR = demand response

Energy types - E = electricity, H = heat, C = cooling
N(on)L(inear)

repr(esentation)
A: B, where A = non-typical method for
representing nonlinear characteristics and B =
aspects of model to which non-typical
linearisation is applied

P = piecewise, y-SLE = y-intercept single line
efficiency, ML = non-zero minimum load rate,
OR = operating region, VD = volume
discretisation, HF = heat flow, PF = power flow

Uncertainty If A: B, A = optimisation method, B = aspects of
model for which uncertainty is described

S = independent scenarios, Se = sensitivity
analysis, SO = scenario optimisation, RO =
robust optimisation, CC = chance constrained
programming, I = interval programming
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Table A.3 Details of models studied in reviewed literature. Refer to Table A.1 for reference(s) associated with a model number and to Table A.2 for a glossary of
abbreviations used in this table.

M
od

el Resolution Optimisation Model elements
Additional elements

Temporal Spatial Mode Method Obj Technologies Energy
types

NL repr. Uncertainty
analysis

1 1H-1Y D P MILP
(CPLEX)

£ O/FC-G, WT, StoreH2 E - - Compares LP and heuristic method

2 12H-
1Y/4TD

12N-D+N P MILP
(CPLEX)

£ NG-CHP, AHP, StoreT E, H - - -

3 12H-
1Y/4TD

20/53B-
D+N

P MILP
(CPLEX)

£ StoreT, ECh C £: y-SLE - Same district analysed for 2006 (20
nodes) and 2020 (53 nodes)

4 5Y-15Y 3N-AD+N P MILP £ NGB, PV, H, WT E - I & CC Includes transport energy demand.
5 1H-

1Y/12TD
3B-D+N P LP £ NG-CHP, WT, PV, NGB,

StoreE, StoreT
E, H - Se -

6 1H-1Y MB-D+N P MILP £ NG-CHP, NGB E, H - - Endogenous Demand
7 1H-3D D O MILP £,

(CO2)
PV, FC, CHP, HRAR,
NGB

E, H, C - - -

8 6P-1Y/3TD 35B-D+N P MILP
(CPLEX)

£ NG-CHP, NGB, StoreT,
ST, GSHP, WT

E, H, WH - Se Heat pipe routing algorithm.

9 4H-0.5Y D P MILP
(CPLEX via
GAMS)

£,
(CO2)

NG-CHP, B-CHP, NGB,
StoreT

E, H OR: CHP - Only the StoreT is a planning
decision variable

10 6P-1Y/3TD 10B-AD+N P MILP
(CPLEX)

£ NG/FC-CHP, PV, NGB E, H - - Multiple NG-CHP types, providing
range of HTPs

11 1H-
1Y/12RW

9N-D+N P MILP £,
CO2

NG-CHP, NGB, ST,
StoreT

E, H - S -

12 1H-3D AD+N O MILP
(MATLAB)

£ O-G, PV, StoreE, DR E - - -

13 1H-1Y/4TD 6B-D+N P MILP
(CPLEX)

£ NG-CHP, WT, NG/BM-B,
PV, ST, AHP, GSHP

E, H - - Particulate emission mapping.

14 1M+2PL-1Y 6B-D+N O MILP
(CPLEX via
GAMS)

£ NGB, AR, ECh, CHP E, H, C P: CHP,
NGB, AR,
ECh

- Heuristic top-layer for planning.
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Table A.3 continued from previous page
M

od
el Resolution Optimisation Model elements

Additional elements
Temporal Spatial Mode Method Obj Technologies Energy

types
NL repr. Uncertainty

analysis
15 1H-1D 1N-D O MILP £ HP, StoreT, NGB, ICE, GT E, H P: GT,

ICE,
NGB, HP

- -

16 1H-1Y 9N-D+N P MILP £ NG-CHP, NGB, AR, ECh,
StoreT

E, H, C - - Seasonal storage

17 1H-1D /
H-1Y

1N-1000B-D O MILP £ NG-CHP, NGB, AHP,
StoreT

E, H P: CHP Se Technology sizing by sensitivity
analysis

18 1H-
20Y/7TD

1N-500000B-
D

O MILP £,
CO2,
η

W-HP, StoreT,
NGB,NG-CHP

E, H P: CHP;
VD:
StoreT

- multi-objective metaheuristic
top-layer for planning.

19 12P-1Y 26N-D+N P MILP
(CPLEX via
MATLAB)

£ NG/BM/O-B, AHP,
StoreT

E(?), H - - Detailed pipeline design. Time
periods are day and night every
two months.

20 6P-8Y/4TS 19N-D+N P MILP £ NG-CHP, NGB, StoreE,
GSHP, EH, ST, DR

E, H - S Building retrofit options.

21 1H-1Y/4TD 4B-D P MILP £ NG-CHP, FC-CHP,
StoreT, NGB

E, H - S Considers 8 different CHP types
(engine, turbine, fuel cell, etc.).
Waste heat from a refinery.

22 1H-1D 1N-AD O MILP £ WT, NG-CHP, NGB,
StoreT, StoreE, DR

E, H - SO ex-post OOS tests

23 1H-
1Y/12TD

20N-1B-
D+N

O MILP £ NG-CHP, NGB,
StoreT,FC-CHP, E-B

E, H HF - Linearised temperature tracking in
pipeline

24 1H-1Y/4TD 5B-AD P MILP
(CPLEX)

£ NG/FC-CHP, NGB,
StoreT, StoreE, PV, WT

E, H - S Compares two FIT systems.

25 1H-1D 1N-D O MILP £ WH-B, NGB, GT, ECh,
AR

E, H, C y-SLE minmax
regret

-

26 1H-1Y/3TW 1N-D O MILP
(CPLEX via
Matlab)

£ NG-CHP, NGB, StoreT,
ST

H P: CHP - -

27 variable (4-8
timesteps)

variable (15-
60N-AD+N)

P MILP
(CPLEX)

£ ECh, StoreT C HF S Linearised temperature/pressure
tracking in the system
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Table A.3 continued from previous page

M
od

el Resolution Optimisation Model elements
Additional elements

Temporal Spatial Mode Method Obj Technologies Energy
types

NL repr. Uncertainty
analysis

28 1H-
19Y/12TD

5N-75B-
D+N

P MILP £ B-CHP,NG-CHP, PV,
AHP, NGB, BM-B, GSHP,
AR, ECh

E, H, C - S

29 1H-1Y 29B-D+N O MILP CO2 B-CHP, O-B, PV, GSHP,
StoreT, H, StoreE, ST

E, H - - Planning by scenarios. Includes
lifetime technology emissions

30 1M+2PL-1Y 6N-21B-
D+N

P MILP £ NGB, ECh, AR, NG-CHP E, H, C P: CHP,
NGB, AR,
ECh

- Collects near-optimal solutions.

31 1H-1Y 39N-D+N P MILP £ NG-CHP, NGB.PV, WT,
HP

E, H - - -

32 6H-7Y/3TS 19N-
92,170B-
D+N

P MILP £ NG-CHP, GSHP, DR E, H - - -

33 1H-M D O LP £ NG/B-CHP, NG/O-B, ST,
StoreT

E, H - - seasonal temperature variation
calculated ex-ante

34 1H-1Y/3TD 5B-AD+N P MILP
(CPLEX via
GAMS)

£ NG-CHP, WT, PV, StoreE,
AR, ECh, StoreT

E, H, C - S, Se Impact of solar energy uncertainty
calculated ex-post.

35 6T-1Y/3TD 5B-AD+N P MILP
(CPLEX via
GAMS)

£,
CO2,
SO2

NG/FC-CHP, NGB,
StoreT

E, H, WH - S Includes embodied technology CO2

costs, based on LCA

36 6T-1Y/3TD 5B-AD+N P MILP
(CPLEX via
GAMS)

£ PV, NGB, ST, ECh, AR,
StoreT

E, H, C - RO: demand Unmet demand calculated ex-post

37 1H-1Y/2TD 7N-137B-
D+N

P MILP
(CPLEX via
AIMMS)

£ CCHP, NGB, ECh, PV E, H, C - S Array of CCHP & NGB technology
choices

38 30min-
1Y/3TD

1N-1000B-D P MILP £ CHP, AHP, StoreT E, H - ∼RO -
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Table A.3 continued from previous page
M

od
el Resolution Optimisation Model elements

Additional elements
Temporal Spatial Mode Method Obj Technologies Energy

types
NL repr. Uncertainty

analysis
39 5Y-15Y 1N-D P MILP £,

(CO2,
air
qual-
ity)

PV, ST, WT, Biomass,
CCHP

E, H, C - CC -

40 5Y-20Y C P MILP
(GAMS)

£ WT, PV,
Hydro-/Geothermal-
/waste-/fossil-power
plant, GSHP, ST

E - Se, S Including transport demand
ϵ-constrained CO2 emissions

41 2H-1Y/3TD 4B-AD+N P MILP £,
(CO2)

GE, GT, NG-CHP, NGB,
AR, ECh, PV, StoreT,
StoreT

E, H, C P: GE &
GT

- -

42 1H-
1Y/12TD

12B-AD+N P MILP £,
(CO2)

NG-CHP, PV, ST, StoreT,
NGB

E, H - - Compares heating network routing.

43 1H-3TD 1N-AD P MILP £,
(CO2)

WT, NG-CHP, NGB,
StoreT, StoreE, DR

E, H - SO -

44 1H-
40Y/200TD

300B-D P MILP
(TIMES)

£,
(CO2)

E/O/W-B, B-CHP, HP,
ST, Hydrop, PV

E, H - S -

45 1H-1Y/2TD 1N-AD P MILP £ NGB, CHP, AR, ECh E, H, C - max regret -
46 1H-15Y/5Y C P MILP £,

(CO2,
η)

CCGT, WT, PV, H2 E - -

47 4P-
25Y/18TD

3N-D P MILP £ CHP, PV + 21
national-scale techs

E - RO Software open-source

48 30min-1D 50B-AD+N O MILP £ CHP, AHP, E-B, StoreT,
StoreE

E, H - SO Linearised temperature tracking &
thermal comfort considered TDs
run in parallel

49 7P-1Y 6B-D+N P MILP
(CPLEX via
GAMS)

£,
CO2

NGB, AR, ECh, CHP E, H, C P: £ RO/SO: £,
GridE, CO2,
demand

-
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Table A.3 continued from previous page

M
od

el Resolution Optimisation Model elements
Additional elements

Temporal Spatial Mode Method Obj Technologies Energy
types

NL repr. Uncertainty
analysis

50 1H-1D 37N-AD+N O MILP £,
(losses)

PV, WT E - SO: PV, WT,
demand

-

51 1Y-20Y 34B-AD+N P MILP £ WT, PV, StoreE E PF SO: WT, PV,
demand, £

Software open-source

52 1H-1D 1N-AD O MILP
(CPLEX via
GAMS)

£ WT, NG-CHP, NGB,
StoreT, StoreE, DR

E, H - S & SO:
demand, £

-

53 1H-1D 37N-AD+N O MILP +
iteration

£ PV StoreE E PF SO -

54 1H-1D 26B-D+N O 2-stage
MILP

£ NG-CHP, NGB, PV, AHP,
StoreT, StoreE

E, H PF, HF RO/SO -

55 Varying 1N-D P MILP £ ST, PV, StoreE, StoreH2,
NG/FC/H2-CHP, NGB,
StoreT, AHP

E, H ML:
AHP, GT;
P: costÊ

- Assesses impact of TDs and
inter-cluster storage

56 Varying 1N-4B-AD P MILP £ PV, WT, H2, StoreE, AHP,
E-B, StoreT, NG-CHP,
NGB, CCGT

E, H - - Assesses impact of TDs and
inter-cluster storage

57 1H-
1Y/14TD

10B-D+N P MILP £ PV, StoreE, GSHP, NGB,
NG-CHP, BM-B, StoreT

E, H - SO (inc. risk) Compares risk aversion techniques

58 1H-1Y 10B-D+N P MILP
(CPLEX)

£ PV, StoreE, GSHP, NGB,
NG-CHP, BM-B, StoreT

E, H - SO: £,
demand,
emission
factor

ϵ-constrained CO2

59 1H-1D 1N-AD O 2-stage
MILP

£ PV, WT, B-CHP, StoreE,
StoreT, NGB, ICE

E, H - S Heuristic top-level planning

60 1H-1D 15N-AD+N P MILP
(CPLEX via
GAMS)

£ WT, PV, StoreE, ECh, AR,
StoreT, NGB, NG-CHP

E, H, C - RO: PV, WT,
£

Can provide spinning reserve for an
external market



Appendix B

Case studies

B.1 Case study 1: Japanese hotel

B.1.1 Demand and district network

This case study consists of only one building, a hotel, so there is no network associated with
it. The hotel has 20,000m2 total floor space, with demand for electricity, hot water, and space
cooling (Figure B.1) over a 24-hour summer day. However, this allows for greater detail in
the internal energy distribution, as given in Figure B.2. Figure B.1 shows gas and electricity
prices. Electricity export, available for the solar photovoltaic panel (PV) and electrical battery
storage (StoreE) technologies, produces a revenue for the system. The electricity sale price is
static throughout the day, while the purchase price varies by dynamic pricing.

Sources Dynamic pricing is inferred from the building electricity demand profile alongside
a knowledge of the size and electricity price of the network power stations, as formulated by
Ikeda and Ooka (2016). Energy demand specific to a hotel was taken from the The Society of
Heating Air-Conditioning and Sanitary Engineers of Japan (SHASE) (2003) database. Japan-
ese Meteorological Agency data on ambient conditions was used for energy consumption
modelling of temperature dependent cooling technologies and available solar energy resource
for PVs.
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Figure B.1 Case study 1 energy demand and fuel pricing, according to The Society of Heating Air-
Conditioning and Sanitary Engineers of Japan (SHASE) (2003) and Ikeda and Ooka (2016).
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B.1.2 Available technologies

Technology characteristics are detailed in Table B.1 and are connected together as per the
schematic given in Figure B.2. The cooling towers are only used when optimising with the
epsilon constraint differential evolution (ϵDE) algorithm, where it is possible to track cooling
flow temperature.

Hot water
demand

NGB

GAS

Electricity
demand

GridPV

Cooler
side

(80°C)

Hotter
side

(85°C)
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Power conditioner

CHPCooling
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Figure B.2 Case study 1 technology connection schematic.

Table B.1 Case study 1 technology characteristics. E = electricity, G = gas, S = solar radiation, C =
cooling, H = heating.

Technology AHP ECh HRAR AR CHPa NGB PV StoreE StoreT-H StoreT-C
Consumption E E G/H G G G S E H C

Production C C C C E, H H E E H C

Rated
capacity

550kW/
500kWb 2500kW 1000kW 1500kW 352kWe

300kWth 750kW 1.2kW/m2 1200kWh 10000kWh 500kWh

Rated
efficiency

358% 603% 132% 125% 40.5%
34.5% 80.0% 85%c 90% 100% 100%

Minimum
load rate

0.2 0.45 0.30 0.25 0.2 0.2 0 0 0 0

Rated
charge/

discharge

N/A 360kW 3000kW 100kW

a CHP produces both electricity and heat.
b Two AHPs, with differing maximum capacity, were available in this study.
c Solar energy conversion efficiency has already been accounted for in the timeseries resource data, PV efficiency of 85% refers to inverter efficiency.

Sources Technology characteristics are based on The Society of Heating Air-Conditioning
and Sanitary Engineers of Japan (SHASE) (2003) database guidelines, alongside the combined
result of various Japanese manufacturer specifications.
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B.1.3 Optimisation problem

The case study was optimised using a linear solver, IBM ILOG CPLEX 12.6.2 (IBM Corp.,
2016), and a custom metaheuristic algorithm, developed by (Ikeda and Ooka, 2016) and
optimised using MATLAB (The Mathworks, Inc., 2015). In both models, the objective was to
select the technology operation schedule over 24 hours which would minimise total operation
costs. Table B.2 gives the timeseries decision variables associated with each technology.

Table B.2 Technologies associated with each decision variable in case study 1. Decision variables are
either continuous (C), binary (B), or SOS2 (SOS2). A description of each decision variable is given in
Table 3.2 on page 42.

Decision Variables
E+ (C) E− (C) E− (SOS2) Eex (C) U (B) S (C) costop (C)

H
ot

el AHP, ECh,
HRAR, AR,
CHP, NGB,
PV, StoreE,
StoreT-H,
StoreT-C

NGB, StoreE AHP, ECh,
HRAR, AR,
CHP, NGB,
StoreE,
StoreT-Ha,
StoreT-Ca

PV, StoreE AHP, ECh,
HRAR, AR,
CHP, NGB,
StoreT-Ha,
StoreT-Ca

StoreE,
StoreT-H,
StoreT-C

AHP, ECh,
HRAR, AR,
CHP, NGB,
PVb, StoreEb,
StoreT-Ha,
StoreT-Ca

a Storage technology pumps are associated with these decision variables.
b These technologies export electricity in association with this decision variable.

Table B.3 gives the problem size for the mixed integer linear programming (MILP) model,
including the single line efficiency (SLE) and special order set constraint of type 2 (SOS2)
piecewise problems. Given that the different optimisation algorithms are used for direct
comparison, the same decision variables and constraints exist in the two models. The problem
size associated with the same problem, including investment decisions is also given for scale
comparison. In the MILP model, binary and integer decision variables associated with
the model are for the operation of each technology in each timestep, in order to model
a minimum load rate on technologies. Additionally, in the piecewise model, there are
SOS2 constraints which account for the increase in the number of binary decision variables.
Following preprocessing in the CPLEX solver, a large number of redundant decision variables
and constraints are found, leading to a significantly reduced problem, particularly in the SLE
problem.

Table B.3 MILP problem size for case study 1, as reported by IBM ILOG CPLEX. * refers to models
which were not considered in the primary analysis, but are shown here for scale. The reduced MIP
model refers to the problem which CPLEX ultimately optimises, following a preprocessing step to
remove redundant decision variables and constraints (such as those which are set to equal a specific
value, so can be deemed as parameters instead of variables.)

Case study
Input Reduced MIP
Variables Constraints ConstraintsAll Binary/Integer/SOS2 All Binary/Integer/SOS2

SLE 6,683 1,859 8,036 490 214 486
SOS2 piecewise 12,275 2,579 9,860 5,527 896 2,396

SOS2 piecewise, inc.
investment decisions*

89,692 15,004 61,225 60,251 10,720 28,496
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B.2 Case study 2: UK district

B.2.1 Demand and district network

This district is illustrative and consists of 10 domestic properties, one large hotel, one large
office, and one power plant. This has been aggregated into the three nodes seen in Figure B.3,
in which there is one domestic node (10 domestic properties), one commercial node (hotel
and office) and one power plant node. Distribution networks exist for low voltage electricity,
gas, and heat.

The district is located in the South-East of England, UK. The demand data, given in Figure
B.4 was aggregated to four typical days (96 timesteps) when comparing piecewise to other
linearised consumption curves. Two separate weeks (winter & summer, 168 timesteps each)
were modelled when analysing equidistant against optimised breakpoint allocation.

Table B.4 gives further information on attributes of each property type, including which
technologies are available. No cooling technologies are considered in the domestic properties
as there is only electricity and heat demand at those nodes. Roof area is used to constrain the
total capacity of solar technologies.

distance (m)
10 20 30 40 50

P

Domestic Commercial

Figure B.3 Graphical representation of case study 2 district network. P = power plant node.

Table B.4 Case study 2 district node details.

Dwelling Hotel Office Plant

Annual energy demand (MWh)
Electricity 7.2 1595.5 481.3 0

Heat 17.5 1641.6 86.5 0
Cooling 0.0 1757.9 99.1 0

Available roof area (m2) 130 1300 900 0

Available technologies NGB, PV, ST,
StoreE, StoreT

µCHP, NGB, PV,
HRAR, AHP, ECh,
ST, StoreE, StoreT

NGB, PV, ST, HRAR,
AHP, ECh, StoreE, StoreT CHP, GridE, GridNG

Sources U.S. Department of Energy representative building demand (EERE, 2013) informed
hourly heat, cooling, and electricity demand of district buildings. Seattle, WA data was
chosen due to climate similarity with London, UK.
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Figure B.4 Case study 2 input demand. a) shows the timeseries clustered into four TDs; b) and c)
shows a winter and summer week, respectively.
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B.2.2 Available technologies

There are a total of 16 technologies available for purchase in the district (10 supply, 3 storage,
3 distribution). The attributes of each technology are given in tables B.5 and B.6. Most
technology investment costs are a function of the technology capacity as well as a capacity-
independent cost. Operational costs are primarily related to the purchase of national grid
electricity (GridE) and national grid natural gas (GridNG). Negative costs are also associated
with revenue if exporting combined heat and power plant (CHP) or PV electricity. PV and
Solar thermal panel (ST) available energy is intermittent, based on weather conditions in each
hour.

Table B.5 Case study 2 technology characteristics. E = electricity, G = gas, S = solar radiation, C =
cooling, H = heating.

Technology AHP ECh HRAR CHPa NGB PV ST GridE GridNG StoreE StoreT-H StoreT-C
Consumption E E G/H G G S S N/A N/A E H C

Production C C C E, H H E H E G E H C

Rated
capacity

550kW/
500kWb 2500kW 1000kW 352kWe

300kWth 750kW 1.2kW/m2 N/A N/Ac N/Ac 1200kWh 10000kWh 500kWh

Rated
efficiency

358% 603% 132% 40.5%
34.5% 80.0% 85%d 100%d 100% 100% 90% 100% 100%

Minimum
load rate

0.2 0.45 0.30 0.2 0.2 0 0 0 0 0 0 0

Rated
charge/

discharge

N/A 360kW 3000kW 100kW

Investment
cost (GBP)

2,517 +
158/kW 111/kW 52,497 +

79/kW
46,480 +
703/kW

2,024 +
35/kW

1,500 +
1,000/kW 1200/kW 75e 16,800f 1,667 +

350/kWh
527 +
66/kWh

527 +
303/kWh

Operation
cost (GBP)

0 0 0 0.004/kWhg 0
-0.1203/kWh
-0.0491/kWhh 0 0.095/kWh 0.025/kWh 0 0 0

a CHP produces both electricity and heat.
b Two AHPs, with differing maximum capacity, were available in this study.
c GridE and GridNG capacity is unconstrained.
d Solar energy conversion efficiency has already been accounted for in the timeseries resource data, PV efficiency of 85% refers to inverter efficiency.
e Fixed charge on per-building tariffs.
f Fixed charge to lay 300m of pipeline to the district.
g CHP also has possible revenue, at 80% of the wholesale electricity price in any hour.
h Revenue gained by the PV feed-in tariff differs between residential (top) and commercial (bottom) properties.

Table B.6 Details of distribution technologies in case study 2. E = electricity, G = gas, H = heating.

Distributed energy E G H
Capacity 2000kW 2000kW 2000kW

Rated efficiency 98% 100% 99.75%/m
Investment cost (GBP) 0a 56/m 530/m

a Cost of electrical lines are ignored since electricity lines are assumed necessary, no matter what the method
for meeting electricity demand.

Sources Supply technology characteristics are based on The Society of Heating Air-Conditioning
and Sanitary Engineers of Japan (SHASE) (2003) database guidelines. Distribution technology
characteristics are based on an aggregation of values in the literature found in Appendix A.
Pre-computation of PV available energy was undertaken by Pfenninger and Staffell (2016)
and acquired for London from https://renewables.ninja (Pfenninger and Staffell, 2016). Us-
ing MERRA reanalysis data, also acquired from https://renewables.ninja, the heat output

https://renewables.ninja
https://renewables.ninja
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equation proposed by Brunold et al. (1994) was used in this case study to pre-compute the ST
heat output.

PV feed-in tariff prices are taken at January 2016 value, from ofgem (2016). Hourly GridE
export prices are courtesy of ELEXON (https://www.elexon.co.uk/). Most costs have been
calculated based on values given in the SPON’S mechanical and electrical services price book
(AECOM, 2015). These costs include a fixed installation cost and a cost that increases linearly
with technology capacity. Thermal energy storage (StoreT), StoreE, PV, and ST costs have
been aggregated from online suppliers.

B.2.3 Optimisation problem

The MILP model was optimised using IBM ILOG CPLEX 12.6.2 (IBM Corp., 2016), with
the objective to select technology capacities and their operation schedule of the full time
horizon. Table B.8 gives the investment and timeseries decision variables associated with
each technology at each location. Binary decision variables associated with the model are
for the operation of each technology in each timestep, in order to model a minimum load
rate on technologies, and for the purchase of each technology, in order to include a capacity-
independent investment cost.

Table B.9 gives the problem size for case study 2, including the SLE and convex bounding
sets (CBS) piecewise problems. In the piecewise models, there are initially marginally
more constraints, to describe each curve. Following preprocessing in the CPLEX solver,
the number of decision variables and constraints reduces by an order of magnitude, leading
to a significantly reduced problem, albeit still with several thousand binary decision variables.

https://www.elexon.co.uk/
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Table B.8 Technologies associated with each decision variable in case study 2. Decision variables are
either continuous (C), binary (B), or CBS (CBS). A description of each decision variable is given in
Table 3.2 on page 42.

Investment decision variables
Ê (C) R̂area (C) Ŝ (C) Û (B) costinv (C)

Pl
an

t CHP, GridE,
GridNG

CHP, GridE,
GridNG

CHP, GridE,
GridNG

D
om

es
ti

c NGB, PV, ST,
StoreEa,
StoreTa

PV, ST StoreE,
StoreT

PV, StoreE,
StoreT

NGB, PV, ST,
StoreE,
StoreT

C
om

m
er

ci
al µCHP, NGB,

PV, HRAR,
AHP, ECh,
ST, StoreEa,
StoreTa

PV, ST StoreE,
StoreT

µCHP, PV,
HRAR, AHP,
StoreE,
StoreT

µCHP, NGB,
PV, HRAR,
AHP, ECh,
ST, StoreE,
StoreT

D
is

tr
ib

ut
io

nc E, G, H G, H G, H

Timeseries decision variables
E+ (C) E− (C) E− (CBS) Eex (C) U (B) S (C) costop (C)

Pl
an

t CHP, GridE,
GridNG

GridE,
GridNG

CHP CHP CHP CHPb, GridE,
GridNG

D
om

es
ti

c NGB, PV, ST,
StoreE,
StoreT

NGB, StoreE,
StoreT

PV NGB StoreE,
StoreT

PVb

C
om

m
er

ci
al µCHP, NGB,

PV, HRAR,
AHP, ECh,
ST, StoreE,
StoreT

NGB, StoreE,
StoreT

µCHP,
HRAR, AHP,
ECh

µCHP, PV NGB, µCHP,
HRAR, AHP

StoreE,
StoreT

µCHPb, PVb

D
is

tr
ib

ut
io

nc E, G, H E, G, H

a Energy capacity = maximum charge/discharge rate for storage technologies.
b These technologies export electricity in association with this decision variable.
c Distribution technologies are given by the energy they distribute: E = electricity, G = natural gas, H = heat.

Table B.9 MILP problem size for case study 2, as reported by IBM ILOG CPLEX. 1 week models were
used to compare the effect of the number of breakpoints; 4 TD models were used to compare CBS
piecewise and SLE models. The reduced MIP model refers to the problem which CPLEX ultimately
optimises, following a preprocessing step to remove redundant decision variables and constraints
(such as those which are set to equal a specific value, so can be deemed as parameters instead of
variables.)

Case study
Input Reduced MIP
Variables Constraints ConstraintsAll Binary/Integer/SOS2 All Binary/Integer/SOS2

1 week, SLE 432,073 6,156 415,034 13,942 3,041 19,248
1 week, 6 breakpoint CBS piecewise 432,073 6,156 417,554 15,794 3,210 21,943

4 TDs, SLE 247,393 3,564 237,699 8,862 1,752 12,465
4 TDs, 3 breakpoint CBS piecewise 247,393 3,564 239,139 9,633 1,848 14,004
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B.3 Case study 3: Bangalore district

This case study is available as a Calliope model at https://github.com/brynpickering/
bangalore-calliope.

B.3.1 Demand and district network

A collection of 17 office buildings within Bangalore, India have been selected, defining an
illustrative district. Buildings within close geographic proximity have been combined into
nodes. Figure B.5 shows the resulting 11 nodes. Most nodes consist of several buildings,
which are connected at the same point on the district cooling network. Building floor area
(Table B.10) has been inferred from the external footprint and number of floors for each
building. As the development is fictitious, no other information is known about these
buildings. Total district energy demand is given in Figure B.6, which shows the average,
minimum and maximum of the 500 scenarios following clustering of the full year into 12
typical days (TDs). The average demand was used in single-scenario optimisation.

B
A

D

C

E

F

GH

I

K
J

N1

EC1

Energy centre
Demand node
Transmission node

Figure B.5 Case study 3 district network.

Table B.10 Case study 3 district node details. GIA = gross internal floor area. Areas given to three
significant figures.

Node A B C D E F G H I J K EC1 N1
GIA (x103m2) 5.44 36.6 12.7 22.4 17.2 78.1 46.6 93.1 23.8 178 39.5

N/A
N/ARoof area (x103m2) 2.72 6.10 3.16 5.60 8.59 11.16 11.65 18.61 5.96 22.31 7.90

Technologies PV, ECh, DG, StoreE, GridE ECh, CCHP,
StoreT, StoreE,

GridE

https://github.com/brynpickering/bangalore-calliope
https://github.com/brynpickering/bangalore-calliope
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Figure B.6 Typical day demand profiles for case study 3. Three traces are given per typical day. The
mean trace shows the average demand across all 500 scenarios and all days within the typical day
group. Maximum and minimum traces are the extreme demand profiles from any of the 500 scenarios,
on any of the days within the typical day group.

Sources Building footprint and heights are taken from OpenStreetMap (OpenStreetMap
contributors, 2017) for a subset of buildings in the latitude – longitude bounding box [Top-left:
12.9860 – 77.7210; bottom-right: 12.9765 – 77.7290]. Consumption data was provided by the
Indian Institute of Human Settlements for their office in Bangalore. Demand scenarios were
generated in Ward et al. (2018).

B.3.2 Available technologies

There are 10 distinct technologies available for purchase in the district (6 supply, 2 storage, 2
distribution), as well as the option to purchase GridE, diesel, and biomass. Table B.10 shows
the difference in technologies available for purchase in the energy centre and the demand
nodes. Technology characteristics, including purchase and operation costs, are given in Table
B.11.

Sources Except for the CCHPs, technology costs are based on values provided by an Indian
engineering firm. Where costs specific to India were not available, values from the (UK
specific) SPON’S mechanical and electrical services price book (AECOM, 2015) have been
used, assuming a currency conversion factor of 90:1 INR:GBP.

B.3.3 Optimisation problem

This model was optimised using IBM ILOG CPLEX 12.6.2 (IBM Corp., 2016) on the CSD3
high performance computing cluster at the University of Cambridge. Table B.12 gives the
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Table B.11 Case study 3 technology characteristics. CTP = cooling to power ratio.

Efficiency

or COP

Maximum

capacity

Cost Carbon

emissions
Other

Capacity Operation

PV 1 N/A 5.50x104 INR/kWp 0b 0 7m2/kWp

B-CCHP 0.2 100MWp 4x105 INR + 6.58x104 INR/kWa 12 INR/kWhb 0.01 kgCO2/kWhc CTP: 2.1

D-CCHP 0.45 100MWp 4x104 INR + 2.80x105 INR/kWa 23 INR/kWhb 0.28 kgCO2/kWhc CTP: 0.7

DG 0.45 100kWp 0.90x104 INR/kW 16 INR/kWh 0.28 kgCO2/kWhc

ECh 3 1MWp 2.41x104 INR/kW 8 INR/kWh 0.7 kgCO2/kWhc

EC-ECh 5 100MWp 2.94x104 INR/kW 8.25 INR/kWha 0.7 kgCO2/kWhc

StoreE 1 5MWh 1.70x104 INR/kWh 0 0 charge rate: 0.7

StoreT 1 100MWh 3x103 INR/kWh 0 0 charge rate: 0.5

Distribution

Electricity 1 20MWp 0 0

Thermal 1 20MWp 731 INR/kWp/m 0
a There is an additional cost of 5x107 INR for construction of an energy centre, which is incurred when at least one energy centre technology is chosen.
b combined cooling, heat and power plants (CCHPs) and PV can export electricity at a rate of -3.40 INR/kWh.
c Carbon emissions are given per unit energy consumed.

investment and timeseries decision variables associated with each technology at each node
type. Binary decision variables associated with the model are for the purchase of each
technology, in order to include a capacity-independent investment cost.

Table B.13 gives the problem size for case study 3, including the single scenario and 10
scenario scenario optimisation (SO) models. The objective was to select technology capacities
and operation schedules over 12 TDs such that total operation costs are minimised. In SO
models, the objective included a weighted sum of operation costs across 10 scenarios and in
some cases, a risk aversion component: the conditional value at risk (CVaR). The problem size
associated with a single scenario optimised over the full time horizon, instead of using TDs,
is given for scale comparison. Binary decision variables associated with the model signal the
purchase of technologies which define capacity-independent investment costs (i.e. purchase
costs). As with case study 4, the problem size is halved prior to optimisation, following
preprocessing in the CPLEX solver.
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Table B.12 Technologies associated with each decision variable in case study 3. Decision variables are
either continuous (C) or binary (B). A description of each decision variable is given in Table 3.2 on
page 42.

Investment decision variables

Ê (C) R̂area (C) Ŝ (C) Û (B) costinv (C)

Energy Centre ECh, CCHP,
StoreTa,
StoreEa,
GridE

StoreT,
StoreE

CCHP ECh, CCHP,
StoreT,
StoreE

Demand node PV, ECh, DG,
StoreEa,
GridE

PV StoreE PV, ECh, DG,
StoreE

Distributionb E, C Ec, C C

Timeseries decision variables

E+ (C) E− (C) Eex (C) Sd (C) costop (C)

Energy Centre ECh, CCHP,
StoreT,
StoreE, GridE

ECh, CCHP,
StoreT,
StoreE

CCHP StoreT,
StoreE

CCHP, GridE

Demand node PV, ECh, DG,
StoreE, GridE

ECh, DG,
StoreE

PV GridE DG, GridE

Distributionb E, C E, C
a Energy capacity = maximum charge/discharge rate for storage technologies.
b Distribution technologies are given by the energy they distribute: E = electricity, G = natural gas, C = cooling.
c Electricity binary purchase decision variable is only used at the energy centre connection, to emulate the purchase

of the energy centre itself.
d There are three additional decision variables associated with storage, to capture storage between typical days.

See Figure 2.2 on page 14 for more details.

Table B.13 MILP problem size for case study 3, as reported by IBM ILOG CPLEX. * refers to models
which were not considered in the primary analysis, but are shown here for scale. The reduced MIP
model refers to the problem which CPLEX ultimately optimises, following a preprocessing step to
remove redundant decision variables and constraints (such as those which are set to equal a specific
value, so can be deemed as parameters instead of variables.)

Case study

Input Reduced MIP

Variables
Constraints Constraints

All Binary/Integer All Binary/Integer

12 TDs, single scenario 141,790 6 173,112 71,619 6 74,397

Full timeseries, single scenario* 4,181,968 6 4,761,654 2,046,768 6 1,633,830

12 TDs, 10 scenario SO 1,424,967 6 1,744,468 720,775 6 748,436
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B.4 Case study 4: Cambridge district

This case study is available as a Calliope model at https://github.com/brynpickering/
cambridge-calliope.

B.4.1 Demand and district network

Case study 4 is based on intended development by the University of Cambridge. The West
Cambridge site is a campus of the University, in which there already exists a number of
academic, residential, leisure, and commercial buildings. The plan1 is to construct 383,000m2

of new floorspace, through a combination of greenfield and brownfield development (the
latter directly replacing current buildings). Of the buildings that are given in the masterplan,
those which fit within the archetypes ‘desk-based commercial’, ‘desk-based research’, ‘lab-
based commercial’, and ‘lab-based research’ are included in this case study. This leads to a
total of 46 buildings, described by 39 nodes in the network shown in Figure B.7. Total district
energy demand is given in Figure B.8, which shows the average, minimum, and maximum of
the 500 scenarios following clustering of the full year into 6 TDs. The average demand was
used in single-scenario optimisation.

Energy centre
Demand node

Transmission nodeD01

D02

C08

D04

D06

C07b C07a

C04_C05_C06

C01_C03
B06

A22_A24

A21_23 A19
A18

A20 A14

A13 A12

A11

A08

A07

A09a
A04
A05b

A09b
A03

A05a

A02
A01

B04_A16

A17
B02_B03

B07
B08

B01

A10b

C02

A10

B05a

Figure B.7 Case study 4 district network.

1More detail on the West Cambridge plan can be found at http://www.westcambridge.co.uk/

https://github.com/brynpickering/cambridge-calliope
https://github.com/brynpickering/cambridge-calliope
http://www.westcambridge.co.uk/
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Table B.14 Case study 4 district node details. GIA = gross internal floor area.

Node
desk_research
(10 buildings)

lab_research
(17 buildings)

desk_commercial
(18 buildings)

lab_commercial
(1 building) Energy centre

GIA 86,774 176,173 181,908 9,473
N/A

Roof area 26,715 72,648 69,824 5,535

Technologies PV, NGB, ST, StoreE, StoreT CHP, GSHP, StoreT, StoreE, GridE, GridNG
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Figure B.8 Typical day demand profiles for case study 4. Three traces are given per typical day. The
mean trace shows the average demand across all 500 scenarios and all days within the typical day
group. Maximum and minimum traces are the extreme demand profiles from any of the 500 scenarios,
on any of the days within the typical day group.

Sources Energy consumption data from 17 existing buildings on the University of Cam-
bridge estate were used to inform demand scenario generation. Building archetype cat-
egorisation was provided by Aecom, the contracted consultants for the energy plan of the
West Cambridge site. Building internal floor area data was provided by the University of
Cambridge estates management. Building footprint are taken from OpenStreetMap (Open-
StreetMap contributors, 2017).

B.4.2 Available technologies

There are 10 distinct technologies available for purchase in the district (5 supply, 2 storage,
3 distribution), as well as the option to purchase GridE and GridNG. Table B.14 shows the
difference in technologies available for purchase in the energy centre and the demand nodes.
There is no requirement that a given technology is installed at any particular node, as the
investment step of the optimisation will decide this. Technology characteristics, including
purchase and operation costs, are given in Table B.15.
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Table B.15 Case study 4 technology characteristics. HTP = heat to power ratio.

Efficiency
or COP Capacity

Cost
Other

Capacity Operation

NGB 0.82 2MWp 2,024 GBP + 35.3 GBP/kWp 0.025 GBP/kWh

PV 0.85a N/A 1,500 GBP + 1,000 GBP/kWp
-0.1203/kWh
-0.0491/kWhb 7m2/kWp

ST 1a N/A 1,200 GBP + 700 GBP/kWp 0 1m2/kWp

CHP 0.405 25MWp 4.65x104 GBP + 703 GBP/kWp 0.029 GBP/kWhc HTP: 0.83

GSHP 4.07 22MWp 2,520 GBP + 4,221 GBP/kWp 0.095 GBP/kWh

StoreE 1 5MWh 1,670 GBP + 350 GBP/kWp 0 charge rate: 0.7

StoreT 0.9 10MWh 527 GBP + 65.7 GBP/kWp 0 charge rate: 0.3
heat loss: 0.01

Distribution

Electricity 1 25MWp 0 0

Heat 2.5x10−3 loss/m 25MWp 294 GBP + 281 GBP/kWp/m 0

Gas 1 25MWp 1.7x104 GBP + 10 GBP/kWp/m 0
a Solar energy conversion efficiency has already been accounted for in the timeseries resource data for PV and ST. For PV, 0.85 refers to

inverter efficiency.
b Revenue gained by the PV feed-in tariff differs between residential (top) and commercial (bottom) properties.
c CHP can export to the grid, using a time variable rate equal to 80% of the wholesale electricity prices during 2015.

Sources CHP, natural gas boiler (NGB), ground source heat pump (GSHP), and distribution
technology investment costs are based on linear interpolation of costs given in AECOM (2015).
StoreT, StoreE, PV, and ST costs have been aggregated from online suppliers. Operation costs
are taken as average commercial electricity and gas prices in 2015. PV feed-in tariff prices are
taken at January 2016 value, from ofgem (2016). CHP export revenue is courtesy of ELEXON
(https://www.elexon.co.uk/).

CHP and NGB characteristics are based on The Society of Heating Air-Conditioning
and Sanitary Engineers of Japan (SHASE) (2003) database guidelines. All other technology
characteristics are based on an aggregation of values in the literature found in Appendix A.
Pre-computation of PV available energy was undertaken by Pfenninger and Staffell (2016)
and acquired for Cambridge from https://renewables.ninja (Pfenninger and Staffell, 2016).
Using MERRA reanalysis data, also acquired from https://renewables.ninja, the heat output
equation proposed by Brunold et al. (1994) was used in this case study to pre-compute the ST
heat output.

B.4.3 Optimisation problem

This model was optimised using IBM ILOG CPLEX 12.6.2 (IBM Corp., 2016) on the CSD3
high performance computing cluster at the University of Cambridge. Table B.16 gives the
investment and timeseries decision variables associated with each technology at each node
type. Binary decision variables associated with the model are for the purchase of each
technology, in order to include a capacity-independent investment cost.

https://www.elexon.co.uk/
https://renewables.ninja
https://renewables.ninja
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Table B.16 Technologies associated with each decision variable in case study 4. Decision variables are
either continuous (C) or binary (B). A description of each decision variable is given in Table 3.2 on
page 42.

Investment decision variables

Ê (C) R̂area (C) Ŝ (C) Û (B) costinv (C)

Energy Centre CHP, GSHP,
StoreTa,
StoreEa,
GridE,
GridNG

GSHPb StoreT,
StoreE

CHP, GSHP,
StoreT,
GridE,
GridNG

CHP, GSHP,
StoreT,
StoreE,
GridE,
GridNG

Demand node PV, NGB, ST,
StoreEa,
StoreTa

PV, ST StoreE,
StoreT

PV, NGB, ST,
StoreE,
StoreT

PV, NGB, ST,
StoreE,
StoreT

Distributionc E, H, G H, G H, G

Timeseries decision variables

E+ (C) E− (C) Eex (C) Sd (C) costop (C)

Energy Centre CHP, GSHP,
StoreT,
StoreE,
GridE,
GridNG

CHP, GSHP,
StoreT,
StoreE

CHP StoreT,
StoreE

CHP, GridE,
GridNG

Demand node PV, NGB, ST,
StoreE,
StoreT

NGB, StoreE,
StoreT

PV StoreE,
StoreT

PV

Distributionc E, H, G E, H, G
a Energy capacity = maximum charge/discharge rate for storage technologies.
b The GSHP capacity is limited by the extent of the borehole field, hence the need for the R̂area decision variable.
c Distribution technologies are given by the energy they distribute: E = electricity, G = natural gas, C = cooling.
d There are three additional decision variables associated with storage, to capture storage between typical days.

See Figure 2.2 on page 14 for more details.
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Table B.17 gives the problem size for case study 4, including the single scenario and
10 scenario SO models. The objective was to select technology capacities and operation
schedules over 6 TDs such that total operation costs are minimised. In SO models, the
objective included a weighted sum of operation costs across 10 scenarios and in some cases,
a risk aversion component: the CVaR. The problem size associated with a single scenario
optimised over the full time horizon, instead of using TDs, is given for scale comparison.
Binary decision variables associated with the model signal the purchase of technologies
which define capacity-independent investment costs (i.e. purchase costs). This case study
provides the largest problem size of all case studies in this thesis. As with case study 4, the
problem size is halved prior to optimisation, following preprocessing in the CPLEX solver.

Table B.17 MILP problem size for case study 4, as reported by IBM ILOG CPLEX. * refers to models
which were not considered in the primary analysis, but are shown here for scale. The reduced MIP
model refers to the problem which CPLEX ultimately optimises, following a preprocessing step to
remove redundant decision variables and constraints (such as those which are set to equal a specific
value, so can be deemed as parameters instead of variables.)

Case study

Input Reduced MIP

Variables
Constraints Constraints

All Binary/Integer All Binary/Integer

6 TDs, single scenario 229,901 416 400,650 110,196 416 218,024

Full timeseries, single scenario* 11,934,733 416 18,128,034 4,819,588 416 7,201,929

6 TDs, 10 scenario SO 2,887,576 416 3,984,676 1,837,647 416 2,220,271
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