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Abstract

Increased availability of high resolution metered con-
sumption data shows clear spatio-temporal variability
in energy demand, both in terms of magnitude and
time. This variability is rarely captured in district
energy modelling and optimisation. In this paper,
we demonstrate a modelling approach that integrates
the stochastic variability of energy demand in energy
system optimisation. In our set-up, energy demand is
a stochastic function over time, separated into week-
days and weekends in a year. We consider cooling and
electricity as end-uses. We implement the district en-
ergy optimisation using the mixed integer linear pro-
gramming (MILP) Scenario optimisation (SO) frame-
work. The stochastic variability of hourly demand is
represented by 500 scenarios for 24 typical days in
the year. For computational efficiency, we implement
a scenario reduction step, resulting in 16 reduced sce-
narios as representative of the full scenario set. These
16 scenarios are used to formulate an SO model for
a group of office buildings in Bangalore, India. The
objective in this model is to minimise the Conditional
Value at Risk (CVaR) associated with each scenario,
weighted by the probability of that scenario being
realised. A scenario can have some demand unmet,
but this will incur a financial penalty. To better un-
derstand the necessary parametrisation of the model,
the penalty for unmet demand is tested by sensitivity
analysis.

Introduction

District energy systems are becoming more preva-
lent as a method of meeting building energy de-
mand. Past work has shown that a district energy
network gives better overall utility from energy sys-
tems than building-level solutions (Morvaj, Evins,
and Carmeliet 2016; Li et al. 2016; Jennings, Fisk,
and Shah 2014). However, optimal design of district
energy systems requires good knowledge of the spatio-
temporal variations of energy demand of buildings
by their end-use. This information is not normally
available, especially for unrealised buildings. Where
available, past data from similar building typologies
may be used. More commonly, archetype or refer-
ence demand profiles are assumed to be representa-

tive of future energy demand (Fonseca and Schlueter
2015; Swan and Ugursal 2009). Given that models
for district energy optimisation can be computation-
ally intensive, neither the stochastic variations nor fu-
ture changes in demand are fully considered. Yet, it
is well acknowledged that influences such as weather
and occupancy can inevitably result in large varia-
tions in demand. Such variations are the cause of dif-
ferences between projected and actual annual energy
demand being recorded to be anywhere between 16%
and 500% in UK commercial properties (The Carbon
Trust 2011).

Methods for optimizing district energy systems that
quantify resilience of the system against uncertainty
in energy demand are still nascent. Indeed, the op-
timisation of multi-energy systems can be complex,
with thousands of design variables. Scenario optimi-
sation (SO), where risk measures are part of the ob-
jective function of optimisation, offers a mechanism of
explicitly considering the uncertainty of system per-
formance under variable demand scenarios. In SO
models, a range of future scenarios is defined, each
with a different probability of occurrence. The ob-
jective function aims to best meet all possible future
realisations of the system, with reasonable considera-
tion for a scenario’s probability of occurrence. SO is
hitherto applied in the context of large-scale energy
systems modelling. For instance, Maurovich-Horvat,
Rocha, and Siddiqui 2016 used it for the optimal op-
eration of a combined heat and power plant under
uncertain spot pricing, while Bukhsh, Papakonstanti-
nou, and Pinson 2016 applied it to energy market
clearing under uncertain wind availability.

This paper extends the SO methodology to uncer-
tain energy demand when designing district energy
systems. To do so, a set of probabilistic demand sce-
narios must be generated as input data. There is an
infinite number of future scenarios that could be re-
alised, each with an infinitesimally small probability
of occurrence and a probability density function with
which they can collectively be described. We cannot
consider an infinite number of scenarios, so reduction
techniques are instead employed. By randomly sam-
pling a stochastic representation of demand, a large
number of equiprobable scenarios can be created. In
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order to maintain tractability of the optimisation pro-
cess, these scenarios can be clustered, allowing for
further discretisation without loss of understanding.
In the following sections we describe a method for
using data-driven stochastic energy demand profiles
to produce scenarios for use in SO. As a preliminary
test of the applicability of SO to uncertain demand,
we apply the reduced scenarios to a fictional collection
of office buildings in India. A comparison is made
between single-scenario and multi-scenario cases. We
also analyse the sensitivity of the outcomes to the
pre-imposed penalty for unmet demand scenarios.

Case study

District

Stochastic energy demand profiles have been derived
from high-resolution metered data of a desk-based of-
fice building in Bangalore, India (the methodology for
generating these profiles is described in Ward et al.
2016). A collection of office buildings within the same
city are assumed to define a district. Figure 1 shows
each of these buildings, and the nodes used to repre-
sent them. In most cases several buildings have been
merged into one node on the district cooling network.
Building floor area (table 1) has been inferred from
the external footprint and number of floors for each
building. No other information is known about these
buildings; we use only their relative size and position
to test our modelling approach. Building occupancy
is one of the uncertainties which leads to the variabil-
ity of the metered data. We assume a similar degree
of uncertainty in the buildings of our test district,
hence we do not attempt to infer occupancy. Four
energy centres are proposed, at different positions on
the periphery of the district. Each is sited on a cur-
rently undeveloped piece of land, according to satel-
lite data. The cooling network is given in figure 1,
with an assumption of no losses in the pipework, due
to the similarities between ground temperature and
cooling water temperature.

Demand profiles

Building demand for cooling and electricity has been
randomly sampled from the stochastic energy de-
mand profiles and scaled to building floor area. 500
samples have been taken for 24 ‘typical’ days. These
days represent weekends and weekdays in each month
of the year. Although the use of typical days is promi-
nent in energy optimisation (e.g. Omu et al. 2015;
Jennings, Fisk, and Shah 2014; Cano et al. 2014)
their use leads inevitably to inaccuracies compared to
the full time series (Pfenninger 2017). However, we
explicitly account for variability within typical days
and therefore do not expect significant difference be-
tween using typical days versus full time series of de-
mand. Figure 2 shows the possible variation in de-
mand within each of the 24 typical days, summed over
the entire district. Variation at a building level (not
shown here for brevity) is more prominent because
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Figure 1: Case study district

the aggregation of demand over the entire district re-
sults in a certain degree of load smoothing.

Available technologies

Table 1 describes technologies which are available at
each node. Although buildings have the option to
have their own building-level air conditioning (AC),
this is limited to less than the total demand for the
building. It is expected that cooling demand in this
district will be met via the cooling network, by either
a large-scale electric chiller (EC) or an absorption
chiller, linked to a combined heat and power plant
(CCHP). Cold water thermal energy storage (TES)
is available at energy centres, to provide flexibility,
and building-level photovoltaic solar panels (PV) can
be installed, which are inherently inflexible. Technol-
ogy costs are calculated from various sources. Where
costs specific to India were not available, values from
the SPONS mechanical and electrical services price
book (AECOM 2015) have been converted from GBP
to INR at a rate of 90 INR/GBP. A full specification
of technology costs can be found in the model con-
figuration at https://github.com/brynpickering/
bangalore-calliope.

Weather

Solar photovoltaic panels have the capability to meet
a large proportion of the electrical demand in the
studied district. Expected output is based on solar ir-
radiance and temperature for 2015 and is acquired in
steps from www.renewables.ninja (Pfenninger and
Staffell 2016). As the metered data is from December
2015 to November 2016, the weather variability expe-
rienced across that year, including extreme weather
events, will be encompassed in the range of metered
demand profiles. Thus, weather variability will be a
component of the scenarios we produce from stochas-
tic samples.
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Table 1: District node details.

Node A B C D E F G H I J K EC1 EC2 EC3 EC4 N1
GIA 5,440 36,586 12,650 22,400 17,184 78,086 46,582 93,064 23,846 178,496 39,504

N/A
N/ARoof area 2,720 6,098 3,162 5,600 8,592 11,155 11,646 18,613 5,962 22,312 7,900

Technologies PV, AC, Grid EC, CCHP, TES, Grid
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Figure 2: Demand samples and cluster means, summed over all locations in the district. Clusters represent
weekday (clusters 1-12) and weekends (clusters 13-24) in each month, starting in December.

Methodology

Scenario reduction

The introduction of probabilistic scenarios in an op-
timisation model can result in model intractability.
Particularly if there are hundreds of scenarios, it is
not feasible to consider anything other than basic sce-
nario optimisation models. Accordingly, the selection
of the ‘right’ subset of scenarios becomes an impor-
tant step in SO models. Conejo, Carrión, and Morales
2010 proposed the use of probability distances to re-
duce the number of model scenarios, detailing two
primary variants of the method which use the Kan-
torovich distance1. Both variants apply a cost metric
to each scenario s in the scenario set S, from which a
subset S′ is chosen based on the minimisation of the
difference in the probability distributions describing
the costs in S and S′.

The two variants of scenario reduction proposed by
Conejo, Carrión, and Morales 2010 differ on the cost
metric applied to each scenario. In the first, a key
performance indicator (KPI) describing the scenarios
is selected. This might be the maximum hourly de-
mand per scenario, or the total demand over the en-
tire year. The problem here is the inability to assess
which of the possible KPIs is actually key from the
point of having the biggest impact on the objective

1For a detailed mathematical formulation, readers are re-
ferred to Conejo, Carrión, and Morales 2010; Römisch 2009.

function. The second variant requires that a sim-
ple (non probabilistic) optimisation model is run for
each scenario. These simple models are a formulation
of the SO model which do not consider uncertainty.
They are relatively fast to solve, and can be run in
parallel on a high performance cluster in a matter of
minutes. As a result of the simple optimisation, an
objective function is calculated for each scenario. It
is used in the Kantorovich distance calculation.

A refinement of the second variant, proposed by
Bruninx and Delarue 2016, is used in this study.
Conejo, Carrión, and Morales only considered opti-
misation of operation costs in its second variant, fix-
ing the investment cost for each of the simple mod-
els. Bruninx and Delarue included investment costs
in addition to operation costs. Therefore all decision
variables are part of the simple model optimisation,
but binary and integer constraints are not included
for computational efficiency. In our simple models,
We keep the binary ‘purchase’ constraints applied to
investment decisions. Because we use typical days as
against full time series of annual demand, our simple
optimisation runs within reasonable solution times
(O(100s) on a high performance cluster).

The process for scenario reduction can be summarised
as follows:

1. Create 500 scenario models, in which each build-
ing is randomly assigned electricity and cooling
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Figure 3: Representation of the CVaR risk measure.

demand profiles for each typical day.

2. Run simple optimisation for each scenario in par-
allel, minimising system cost (investment and op-
eration) for each case independently.

3. Select 16 scenarios to represent the 500 input sce-
narios, by minimising the Kantorovich distance
between the probability density of their objective
function values to that of the full scenario set.

4. Assign each scenario in the full set to the closest
(by probability distance) of the 16 scenarios in the
reduced subset, weighting each reduced scenario
by the number of scenarios it represents.

Scenario optimisation

Once reduced scenarios are derived, the uncertainty
described by these scenarios can be dealt with by
scenario optimisation (SO). Our SO model has two
stages. The first involves finding the optimal tech-
nologies and their capacities, irrespective of their abil-
ity to meet variability in demand. In the second stage,
the optimal technologies are reassessed for their abil-
ity to meet variability in energy demand represented
by the 16 reduced scenarios. If energy demand rep-
resented by any particular scenario is not met, a fi-
nancial penalty is incurred. The impact of a single
scenario is weighted by its probability of occurrence,
such that low probability scenarios may have unmet
demand without incurring a large penalty on the over-
all objective function.
Having unmet demand is a risk, which we monetise
for direct application to the objective function. The
risk metric we use is the Conditional Value at Risk
(CVaR). The monetary cost of unmet demand scenar-
ios in the SO model can be described by a probability
distribution. Given a confidence level α ∈ [0, 1), the
CVaR describes the sum of the expected cost above
that level (fig. 3). As it concentrates on the right-
hand tail of the distribution, it is a risk measure that
is heavily influenced by the worst-case scenarios. It
is an extension of the value at Risk (VaR) measure,
which minimizes the cost at the confidence level α,
that is better suited to linear optimisation models
(Rockafellar and Uryasev 2002).

Model formulation

The SO objective function is shown below in eq. 1. It
includes both initial investment as well as operational
cost of technologies and is a variant of the objective

function used by Maurovich-Horvat, Rocha, and Sid-
diqui 2016. In this formulation, CVaR of a scenario is
estimated using η, weighted by the probability of oc-
currence of that scenario, Ps′ , and calculated across
scenarios by combination with the model-wide VaR,
ξ. Model-wide parameters α and β describe the con-
fidence interval and risk aversion metric, respectively.
In this study, α was set to 90% and β to 5.

min
∑
s′∈S′

(Ps′costs′) +β(ξ+
1

1− α
∑
s∈S′

(Ps′ηs′)) (1)

The objective function is subject to various con-
straints typical to energy system models, all of which
are formulated within the open-source MILP mod-
elling framework Calliope v0.6.0 (release candidate)
(Pfenninger and Keirstead 2015)2. Models were run
on a high performance computing cluster, with opti-
misation undertaken by the Gurobi solver (v6.0.2).

Results
Scenario reduction

The 500 scenarios run through the simple optimisa-
tion model have total annual system energy demand
ranging from 50GWh to 53.8GWh and the objec-
tive function values from 439×106 to 519×106 INR.
Although there is a trend towards greater objective
function value with increased total system demand
(fig. 4), the highest objective value is elicited by a
system demand of 52.35GWh and the lowest by a
system demand of 51.25GWh.
Figure 5 shows the reduced scenarios: the total an-
nual system demand for these ranges from 50.6 GWh
to 52.75 GWh. Note that the scenario representing
the highest objective function values (218) has a total
system demand lower than ten other reduced scenar-
ios. Table 2 gives further details on the reduced sce-
narios. The weight assigned to each is the percentage
of the 500 initial scenarios that they represent and
will be used as the scenario probability in the SO
model. This weight ranges from 1.6% to 9.8%. The
undulation of weight matches the non-normal shape
of the objective function value distribution (shown in
fig. 4).

Scenario optimisation

As a baseline, the mean energy demand (seen in fig.
2) was used with the simple (non probabilistic) opti-
misation model. Fig. 6 shows the installed capacity
of technologies for this baseline. Centralised electric
and absorption chillers meet most of the of the sys-
tem cooling demand, with some building-level AC in-
stalled alongside. Electricity demand is mainly met
by the grid, although approximately a third of it is
met by solar photovoltaic panels installed on build-
ing roofs. We are not connecting the nodes by power

2The entire model, including input parameters, stochastic
curves and optimisation constraints, can be found at https:

//github.com/brynpickering/bangalore-calliope.
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Figure 4: Total district demand against deterministic objective function value for 500 sets of sampled demand
profiles. Distribution of demand and objective function value given outside the scatter plot.
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SamplesReduced scenarios

51

218

78
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Figure 5: Total district demand against deterministic objective function value for 500 sets of sampled demand
profiles, coloured by reduced scenario group. All scenarios within a reduced scenario group will be represented
by a single reduced scenario in subsequent scenario optimisation. Reduced scenarios representing each group, 16
in total, are emphasised, and occasionally labelled.

Table 2: Details of 16 reduced scenarios which repre-
sent the full 500 scenario set.

Scenario
Cost (108 INR)

Weight
Total Investment

51 4.44 1.56 1.6%
187 4.53 1.66 5.6%
221 4.57 1.58 5.0%
320 4.60 1.57 7.8%

4 4.64 1.57 8.4%
144 4.66 1.76 5.2%
391 4.68 1.58 7.0%
35 4.70 1.71 7.0%

275 4.72 1.75 6.2%
206 4.75 1.56 9.8%
430 4.78 1.77 9.6%
423 4.81 1.67 6.2%
147 4.85 1.83 9.8%
491 4.91 1.85 4.6%
78 4.96 1.86 4.2%

218 5.05 2.02 2.0%

lines. Instead, the electricity produced by the CCHP
at the energy centres is exported back to the grid.
The result of our SO model shows an increase in en-
ergy centre capacity in EC1 (fig. 7). The TES ca-
pacity does not increase dramatically, although it is
an ideal technology to increase system flexibility. PV
investment decreases considerably when accounting
for uncertainty. This is because the PV modules are
being sized to the lowest peak electricity demand of
all scenarios (we do not allow electricity from PVs to
be exported back to the grid). As a result, there is
greater reliance on the electricity grid.

Unmet demand penalty

The financial penalty for unmet demand is varied
from 100 INR/kWh to 107 INR/kWh, in increments
of a factor of ten. The result, as expected, is decrease
in unmet demand with increased penalty. Fig. 8
shows, for each scenario, the magnitude of decrease in
unmet demand across all 16 scenarios for the penalty
range between 100 INR/kWh and 106 INR/kWh. At
107 INR/kWh there is no unmet demand. Unmet de-
mand is found uniformly across scenarios at penalty
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Figure 6: Optimal configuration of installed capacity
in the mean (single-scenario) solution.
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Figure 7: Optimal configuration of installed capac-
ity resulting from an SO model with unmet demand
penalty of 105 INR/kWh.
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Figure 8: Comparison of quantity of unmet demand
incurred in various scenarios for penalty rates rang-
ing from 100 to 106 INR/kWh. NOTE: Scenarios
are given in ascending order of probability, but as the
y axis is a log10 scale, lower probability scenarios ap-
pear to have a greater contribution than is actually
the case.

Table 3: Comparison of system investment costs (108

INR) between the non-SO case (mean) and the SO
case with varying penalty for unmet demand.

SO, with penalty (INR / kWh):
Mean 102 103 104 105 106 107

1.54 0.11 0.88 1.51 1.86 1.89 1.89

levels 102 and 103 INR/kWh. Only at 104 INR/kWh
do we see a particular weighting of unmet demand
onto lower probability scenarios. Large amounts of
unmet demand allow for the technology capacities to
be reduced. Table 3 shows an increasing investment
cost with increasing unmet demand penalty. How-
ever, the investment cost is similar from a penalty of
105 onward. At the higher penalty values, the opti-
mal system investment cost is 1.89×108 INR.

Discussion
It is clear that the financial penalty used in SO has
a significant effect. If it is too low then it has no
influence on the objective function. Setting it too
high would be similar to solving the optimisation
project for worst case scenarios (i.e. robust optimisa-
tion). In other SO studies, the penalty has been an
interpretable value/cost. For instance, Bukhsh, Pa-
pakonstantinou, and Pinson 2016 used the costs of
dispatchable, expensive diesel generators in cases of
insufficient wind supply. Maurovich-Horvat, Rocha,
and Siddiqui 2016 use the higher cost spot electricity
and gas prices as a penalty for incorrectly purchased
energy from the futures market. Both these penal-
ties exist in their respective markets. In our case,
the penalty represents a virtual source of energy sup-
ply, to ensure all demand is met. This might trans-
late in reality to a diesel generator for electricity, or
window-mounted AC for cooling. Neither is likely to
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incur the costs per kWh that we specify as penalty
to avoid their use (≥ 105 INR / kWh), especially if
we consider that the cost of diesel and grid electricity
is around 60 INR / kWh and 8 INR / kWh, respec-
tively. This cost therefore must monetize and include
factors such as commercial losses, loss in productiv-
ity, and cost of carbon. Losses in commercial sales
due to grid-based power outages can be up to 2% in
Bangalore (Dollar, Hallward-Driemeier, and Mengis-
tae 2005). Indeed, if we consider CVaR as the ‘cost of
carbon’, we may better penalise highly dispatchable
but polluting technologies.

Finally, this study has considered a stable grid, but
the reality is daily power outages which are met by
diesel generators. In fact, in the SO cases, less PV
is installed, in favour of greater grid capacity. Power
outages would perhaps leave these systems more vul-
nerable than if we designed to the single-scenario so-
lution.

Conclusions

In this study, we have sampled data-driven stochas-
tic demand profiles for an office in Bangalore, India,
and applied the resulting 500 scenarios to a fictional
district of office buildings in the same city. By min-
imising probability distances we were able to consider
a subset of 16 scenarios as representative of the full
500 scenario set. This subset of scenarios allowed us
to create a tractable Mixed Integer Linear (MILP)
scenario optimisation (SO) model, using Conditional
Value at Risk (CVaR) as our risk measure. In so
doing we were able to seek the optimal technology
investment portfolio which would meet all possible
future demand profiles, with due consideration of the
probability of those futures being realised. The ex-
ogenous penalty for unmet demand, used to calculate
CVaR, was varied between 102 and 107 INR / kWh
to assess its impact on the optimal technology in-
vestment portfolio. This penalty represents the cost
incurred for unmet demand with an external supply
technology, or in the cost of discomfort / loss of pro-
ductivity caused by leaving it unmet. It is clear that
a greater understanding of the realistic penalty for
unmet demand is required, as its impact varies con-
siderably. At a low penalty, closer to the actual cost
of bringing in building-level technological solutions,
there is a considerable amount of unmet demand. At
a very high penalty, there is no or little unmet de-
mand, which means we are only optimising for the
worst case.

Future work

Greenhouse gas penalty

By allowing all demand to be met, but a cost of
greater emissions for greater flexibility (e.g. diesel
generators), we would be able to use a cost of carbon
as our SO risk measure. Testing the cost of carbon
would then give us an indication of the required level

to tip the balance towards low-carbon technologies in
SO.

Power outages

Given the geographic context, it is prudent to also
consider a non-infinite grid supply. Particularly, the
effect of outages on previously designed optimal so-
lutions, such as those from this study, and the effect
on future SO models.

Scenario reduction

It is not clear how well scenario reduction has allowed
our SO model to cover the scenario space. As such, it
will be necessary to test the SO model results against
the full scenario set. This is undertaken by fixing the
technology capacities, as given by the SO optimal so-
lution, and running each of the 500 scenarios in a
rolling horizon optimisation. If there is too much un-
met demand in any scenarios, this will indicate that
the scenario reduction was unsuccessful. If that is the
case, we will increase the number of reduced scenar-
ios and test out skewing the chosen scenarios towards
the higher values of the scenario set objective func-
tions. In the latter case, this will disproportionately
represent the higher values in more detail than the
lower values. As we are only particularly interested
in controlling the extreme cases, this may be a use-
ful measure. We may find that 16 scenarios is more
than sufficient, at which point we can test fewer re-
duced scenarios, to allow greater complexity in other
dimensions.
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