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H I G H L I G H T S

• We present a new 3-step method for handling demand uncertainty in district energy optimisation.

• Temporally autocorrelated demand scenarios are generated using real metered demand.

• We apply the 3-step methodology to two case study districts: Bangalore, India and Cambridge, UK.

• Cost optimal districts favour building-scale technologies to centralised energy generation.

• Unmet demand in out-of-sample scenarios is reduced 25 to 50 times when using scenario optimisation.
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A B S T R A C T

Current district energy optimisation depends on perfect foresight. However, we rarely know how the future will
transpire when undertaking infrastructure planning. A key uncertainty that has yet to be studied in this context is
building-level energy demand. Energy demand varies stochastically on a daily basis, owing to activities and
weather. Yet, most current district optimisation models consider only the average demand. Studies that in-
corporate demand uncertainty ignore the temporal autocorrelation of energy demand, or require a detailed
engineering model for which there is no validation against real consumption data. In this paper, we propose a
new 3-step methodology for handling demand uncertainty in mixed integer linear programming models of
district energy systems. The three steps are: scenario generation, scenario reduction, and scenario optimisation.
Our proposed framework is data-centric, based on sampling of historic demand data using multidimensional
search spaces. 500 scenarios are generated from the historical demand of multiple buildings, requiring historical
data to be nonparametrically sampled whilst maintaining interdependence of hourly demand in a day. Using
scenario reduction, we are able to select a subset of scenarios that best represent the probability distribution of
our large number of initial scenarios. The scenario optimisation step constitutes minimising the cost of tech-
nology investment and operation, where all realisations of demand from the reduced scenarios are probabil-
istically weighted in the objective function. We applied these three steps to a real district development in
Cambridge, UK, and an illustrative district in Bangalore, India.

Our results show that the technology investment portfolios derived from our 3-step methodology are more
robust in meeting large possible variations in demand than any model optimised independently with a single
demand scenario. This increased robustness comes at a higher monetary cost of investment. However, the high
investment cost is lower than the highest possible cost when each of the initial 500 scenarios is optimised
independently. In both our case studies, building level energy systems are always more robust than district level
ones, a result which disagrees with many existing studies. The outcomes enable better examination of district
energy systems. In addition, our methodology is compiled as an open-source code that can be applied to optimise
existing and future energy masterplans of districts.

1. Introduction

District energy systems are becoming more prevalent as a method of

meeting building energy demand. Past work has shown that a district
energy network gives better overall utility from energy systems than
building-level solutions. Depending on the district under study,
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calculated savings vary. Carbon emissions could fall by 23% [1], 44%
[2], or 50% [3]. They could also more than double, albeit with a re-
duction of 74% in system cost, as reported by Jennings et al. [4] and
Mehleri et al. [5]. Some studies disagree with this trend, however,
suggesting only minor savings of a few percent in cost [6] or even a
slight increase [7].

The positive and negative impacts of district systems as a replace-
ment for building-level technologies are case specific and must be
modelled accordingly. Finding an optimal district system depends on
how the problem is mathematically formulated, including realistic re-
presentation of the demand under which the energy system will op-
erate. Indeed, optimal design of district energy systems requires a good
knowledge of the spatio-temporal variations of the energy demand of
buildings by their end-use. If the district consists of existing buildings,
historical demand data may be used directly [6,4]. Where no historical
data exists, such as for new buildings, demand can be simulated [1,2]. If
insufficient data is available, demand can be treated as exogenous.
Archetypal or reference demand profiles from relevant buildings are
thus used as representative of future energy demand for the district
[8–10,3,5]. In all such cases, possible future variations in demand are
not considered. Meanwhile, differences between demand assumed at
the modelling stage and actual annual energy demand have been re-
ported to be anywhere between 16% and 500% in UK commercial
properties [11]. In the case of district energy systems, unexpected
variations can result in failure to meet demand.

In Mixed integer linear programming (MILP), uncertainty is com-
monly expressed by distinct scenarios which are either optimised in-
dependently (e.g. sensitivity analysis) or optimised in parallel using
scenario optimisation1 (SO). When making investment decisions under
operational uncertainty, SO allows a modeller to optimise technology
investment such that the system is more robust to each scenario rea-
lisation.

There are numerous ways through which a modeller can generate
distinct energy demand scenarios: physics-led, data-driven, or assuming
some level of variance from average demand. The latter is the easiest to
incorporate. Studies which have considered demand variations from the
average include variations of ±10% [12] to ±30% [13]. Under-
standably, the choice of variance has been shown to significantly in-
fluence optimisation results [14], and thus cannot be applied without
sufficient validation. On the other hand, physics-led (or engineering)
models require a detailed understanding of the building fabric, external
conditions, and occupancy to simulate demand from the bottom-up.
Future scenarios can be generated through the physics-led model by
Monte Carlo simulations. In each simulation, input parameters such as
material properties, ventilation rates, appliance energy consumption,
and building occupancy are varied stochastically [15,16]. However,
specifying the uncertainty surrounding each model parameter can be
onerous [17], especially when a number of different types of buildings
are included in a district [18].

In contrast, top-down data-driven models use historical consump-
tion data to identify inherent variability in energy demand. They im-
plicitly consider all influencing parameters (predictors) such as
weather, building fabric, and occupancy. If a sufficient amount of data
is available, it is possible to understand the impact of each predictor by
casting the data into statistical models [19,20,17]. If there is in-
sufficient data, the reliability of statistical models to represent the re-
lationships between predictors and energy demand can be limited. Al-
ternatively, it is possible to sample historical demand data directly. In
such cases, the emphasis is less on what causes variations in demand
and more in capturing the variations in energy demand across different

days. With measured data from an office building, Gamou et al. [21]
stated that energy demand in any given hour can be described by a
normal distribution, where there is a 95% probability of samples re-
maining within ±20% of the mean. This distribution has since been
used to generate demand scenarios for optimising energy systems of
hospitals [22,23].

A common shortcoming across current data-driven approaches for
scenario generation is that temporal autocorrelation of energy demand
is not considered. It is evident that energy demand at any particular
hour is influenced by the demand in other hours of the day. The un-
certainty described by scenarios without considering the temporal au-
tocorrelation of demand can thus be misleading, and result in incorrect
system design. Mavromatidis et al. [15] identified this as a key issue,
which was solved in their study by use of a bottom-up physics-led
model for generating demand scenarios. Furthermore, all current ap-
proaches consider uncertainty at any given time to be normally dis-
tributed around the mean which can result in under or overestimation
of demand uncertainty.

In this paper, we present a new 3-step methodology to handle de-
mand uncertainty in district-scale energy optimisation. Our proposed
methodology is data-driven and hence, unlike detailed bottom-up en-
gineering models, scalable for application to large districts. We over-
come the shortcoming of current data-driven models by sampling
multivariate nonparametric representations of historical demand, thus
accounting for temporal autocorrelation and skewness of demand data
around the mean value at any given hour. The methodology we in-
troduce is made openly available online, and therefore, in addition to
being novel, it is also reproducible and extendable by others to practical
district-scale planning problems.

In the following section we describe the principal steps of our pro-
posed method: (1) Data-driven scenario generation, (2) Scenario re-
duction, and (3) Scenario optimisation. In the rest of the paper, we
demonstrate this through two illustrative studies: one in Bangalore,
India, and the second in Cambridge, UK. Through these, we examine
the impact of demand uncertainty on the design of district energy
systems. Finally, we test the robustness of our systems to unseen rea-
lisations of future energy demand, using ‘out of sample’ scenarios.

2. Methodology

2.1. Scenario generation

Particularly at a masterplanning level, little may be known about
buildings within a district other than their intended use and floor area.
Using high-resolution historical data of other buildings representing
similar use, a multidimensional search space can be created to describe
the possible demand profiles for the district. To create a search space
from the available data, we borrow from machine learning by con-
sidering ‘features’ and ‘observations’. Features are the individual mea-
surable properties that are being observed. Observations are the ex-
isting data describing distinct instances of those features. Features are
the consumption values in each hour of a day, which we have observed
for all historical days for which we have data. Over one year, there
would be 24 features and 365 observations.

Clustering of observations into independent search spaces can help
ensure our samples are more realistic. For example, we know that
weekend and weekday electricity consumption will differ in an office
space. Seasons, academic term times, and months are all subjective
typical day clusters that could be chosen. There may be other, unknown
metrics by which observations can be clustered programmatically, such
as by K-means and hierarchical clustering [24]. The advantage of
subjective clustering is the ability to map those clusters into future
years, which we cannot readily do with clustering algorithms. Typical
days are commonly used in mixed integer linear programming (MILP)
optimisation, reducing the length of the time dimension from its full
scale (e.g. one year - 8760 h) to anything from three [5] to six [3], or

1 ‘Scenario’ and ‘stochastic’ are often used interchangeably to describe the
same optimisation procedure. As stochastic optimisation may refer to other
methods of handling stochastic variables, we make the clear distinction by
describing our method as scenario optimisation.
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seven [25] days. Clustered observations form search spaces which re-
present ‘typical’ days in the year.

The shape of a search space depends not only on the set (or subset)
of observations, but also the method by which we interpolate to create a
continuous surface from discrete data. Previous studies have considered
well-conditioned demand, which can be described by a multivariate
normal curve [26,27]. However, daily demand profile sets generally do
not fit a perfect Gaussian profile. This is especially the case when ob-
servations are acquired from multiple buildings within a single arche-
type. There can be sub-clusters of demand profiles with various local
peaks in the distribution. Indeed, our initial analysis shows that demand
is not well conditioned; i.e. it cannot be well described by a parametric
distribution. From Fig. 1 we can see that, with parametric sampling
(assuming multivariate normal distributions), clear clusters of profiles
are lost. The symmetrical nature of multivariate normal sampling has
also led to areas of high profile density to become the sample mean, not
just the mode.

Nonparametric sampling can be more representative of the demand.
However, as we make no assumptions about the shape of the input data,
the search spaces resulting from nonparametric sampling are heavily
dependent on the input data. One method to overcome this is to have
large training and validation sets to tune the relevant hyperparameters.
We discuss here two approaches in which a smaller data set may still be
valid: multi-building data sets and functional principal component
analysis (fPCA).

If we do not wish to replicate the demand profiles of one building
when sampling a search space, we can sample from data describing
multiple buildings within an archetype. Then, when sampling for an
individual building, stochastic profiles will be unlikely to duplicate any
one of the input profile sets. When little is known about a building other
than its archetype, there is validity in this approach. The demand in an
archetypal building could replicate the profiles in any of the input data
buildings in that archetype. In fact, combining data on multiple
buildings was used by the masterplanners when assigning archetypal
demand to the Cambridge case study district [28]. As data from mul-
tiple buildings inform the search space for a single archetype, when two
consecutive days are sampled from the profiles of different buildings in
the same archetype, wildly varying demand may be observed from one
day to the next. Much like the intraday temporal autocorrelation of
demand, there clearly should also be some interday autocorrelation. To
account for this, before stochastically sampling profiles, energy in-
tensity for each input building was normalised by the maximum de-
mand recorded for that building. After sampling, modelled buildings
had their demand scaled by a randomly assigned normalisation factor
from all those available for their archetype.

Without multiple buildings as input data, another approach must be
taken to ensure samples are representative of the archetype and not
only the input building. In fPCA, we can do this since demand for a
typical day is treated as a function of time, as opposed to being discrete
data points [29]. It provides a mathematical definition of the shape of

the curve in terms of a number of functional Principal Components
(PCs) which are the same for all the data samples and describe parti-
cular features of the data. Associated with each PC which is a set of
weightings, or ‘scores’, particular to each day of data and end-use. The
scores describe mathematically the contribution of each PC to the
overall day’s demand profile, per end-use. A search space is then cre-
ated for each typical day by using the set of scores associated with them
[30–32]. Thus, we generate demand profiles that retain the primary
sense of the input data without it being exactly reproduced.

In both methods of preparing the input data, we can use kernel
density estimation (KDE) to create a probability density function (PDF).
In KDE, a kernel (e.g. normal distribution) is applied to each feature in
the observations, and the overlay of all these individual kernels re-
presents the full data set. Fig. 2 represents this with one feature2, which
is a nonparametric distribution due to its lack of a single peak. There
are two important hyper-parameters which dictate the efficacy of KDE:
the kernel and the bandwidth. The kernel is the shape of the density
function applied to each observation when constructing the full PDF. It
is standard to use a Gaussian kernel (as used in Fig. 2), but ‘top hat’,
‘triangular’, and ‘Epanechnikov’ are among other kernel choices [33].
The bandwidth is the scale of smoothness applied to each kernel, akin
to the standard deviation of a normal distribution. if bandwidth =0,
the resulting PDF will have non-zero values only at points corre-
sponding to the input data. As the bandwidth increases to infinity, the
PDF converges on a uniform distribution, with infinite variance. We do
not wish to sample from either of these extreme cases. Instead, we
choose the lowest possible bandwidth that fits a training data set and
can reproduce an independent validation data set on sampling. If there
are too few observations for training and validation, we can use k-fold

Fig. 1. Comparison of parametric and nonparametric sampling methods as a means to produce daily profiles for demand. Profiles are at an hourly resolution and 500
profiles of the input data were drawn from each of the sampling methods.

Fig. 2. Example of KDE, applied to a single feature observation set. A gaussian
kernel has been applied to each observation in this case.

2 The KDE of our 24 features, for each hour in the day, would form a 24-
dimensional probability distribution function, which is impossible to visualise.
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cross-validation in bandwidth and kernel selection. In k-fold cross-va-
lidation, the full data set is randomly partitioned into k subsets. One
subset is retained for validation while the remaining k 1 sets are used
for training. The process is repeated k times, such that all subsets are
used for validation and training [34].

In Fig. 1 we can see the impact of multivariate nonparametric
sampling using multi-building sets (Cambridge) and fPCA (Bangalore),
both sampled from a KDE-generated PDF. fPCA samples were generated
by Ward et al. [32] while multi-building sets were prepared in this
study. The input data is better represented by nonparametric, rather
than parametric sampling; The demand profiles cover a wider space
beyond the range of the input data, while sub-clusters across the data
are still apparent.

Using fPCA for the Bangalore study and multi-building sets for the
Cambridge study, we generate 500 demand profiles per typical day, per
end-use, and per building archetype in kWh/m2. Annual hourly demand
scenarios per building are sampled from these stochastic profiles for a
reference year (Cambridge: 2015, Bangalore: 2016), such that no pro-
file is duplicated between days in the year, or between buildings in the
district. A summary of the 500 scenarios is given in Fig. 6 when dis-
cussing the results of applying this method.

2.2. Scenario reduction

A large number of probabilistic demand scenarios per building can
result in intractability of a district energy optimisation model.
Accordingly, the selection of the ‘right’ subset of scenarios becomes an
important step, especially in scenario optimisation models. This subset
of scenarios should be representative of the variations across the larger
scenario set without requiring the whole set to be included in the op-
timisation model. Conejo et al. [35] proposed the use of the fast-for-
ward algorithm to reduce the number of scenarios. Two primary var-
iants of the methods are proposed, both of which aim to reduce the
Kantorovich distance.3 Both variants apply a cost metric to each scenario
s in the scenario set S, from which a subset S is chosen based on the
minimisation of the difference in the probability distributions de-
scribing the costs in S and S .

The two variants of scenario reduction proposed by Conejo et al.
[35] differ on the cost metric applied to each scenario. In the first, a key
performance indicator (KPI) describing the scenarios is selected. This
might be the maximum hourly demand per scenario or the total de-
mand over the entire year. The KPI is selected subjectively as a measure
that has the biggest impact on the objective function. The first variant is
considered less computationally intensive to apply and has been used
for scenario reduction in existing SO studies [37,38]. The second var-
iant requires that a non-probabilistic optimisation model is run for each
scenario independently. These independent models are a formulation of
the SO model which do not consider uncertainty. They are relatively
fast to solve and can be run in parallel on a high-performance cluster in
a matter of minutes. The objective function value calculated for each
scenario is then used in the Kantorovich distance calculation.

A refinement of the second variant, proposed by Bruninx and
Delarue [39], is used in this study. Conejo et al. [35] only considered
optimisation of operation costs, fixing the investment cost for each of
the independent models. Bruninx and Delarue [39] included investment
costs in addition to operation costs. All decision variables are therefore
part of the independent model optimisation, but binary and integer
constraints are not included for computational efficiency. In our in-
dependent models, we keep the binary ‘purchase’ constraints applied to
investment decisions. Because we use typical days as against the full
time series of annual demand, each independent optimisation runs
within a reasonable solution time (O(100s) on a high-performance
computing cluster).

The process for scenario reduction can be thus summarised as fol-
lows:

1. Optimise the objective function for each scenario in parallel, mini-
mising system cost (investment and operation) for each case in-
dependently.

2. Select 16 scenarios to represent the 500 input scenarios, by mini-
mising the Kantorovich distance between the probability density of
their objective function values to that of the full scenario set.

3. Assign each scenario in the full set to the closest (by probability
distance) of the 16 scenarios in the reduced subset, weighting each
reduced scenario by the number of scenarios it represents.

The result of this process is a scenario subset that can be used for
tractable scenario optimisation. It is applied in the same manner for
both Bangalore and Cambridge case studies. The selected reduced
scenarios are detailed alongside results for SG and SO, in Section 4.

2.3. Scenario optimisation

Once reduced scenarios are derived, the uncertainty described by
these scenarios can be dealt with by scenario optimisation (SO). Our SO
model has two stages. The first involves finding the optimal technolo-
gies and their capacities, irrespective of their ability to meet variability
in demand. In the second stage, the optimal technologies are reassessed
for their ability to meet variability in energy demand represented by the
16 reduced scenarios. If energy demand represented by any particular
scenario is not met, a financial penalty is incurred. The impact of a
single scenario is weighted by its probability of occurrence, such that
low probability scenarios may have unmet demand without incurring a
large penalty on the overall objective function. Having unmet demand
is a risk, which we can choose to not allow (risk-neutral SO) or to
monetise for direct application to the objective function (risk-averse
SO). In this study, we consider a risk-neutral SO to examine the amount
of unmet demand resulting from SO as against deterministic optimisa-
tion. As is standard for district energy optimisation models, we use
MILP as the optimisation technique. However, other optimisation
techniques can be applied within our proposed SO framework. The risk-
neutral SO objective function is shown below in Eq. (1), where S refers
to the reduced scenario subset detailed in Section 2.2. It includes both
initial investments as well as the operational cost of technologies and is
a variant of objective function used by Maurovich-Horvat et al. [40].

+ Pcost costmin
s S

sinvest operates
(1)

2.4. Model formulation

The objective function in Eq. (1) is subject to various constraints
typical to energy system models, all of which are formulated within the
open-source MILP modelling framework Calliope v0.6.1 [41]. These
are:

• Limit the maximum possible capacity of any technology;
• Limit the production of any technology to its capacity;
• Link production to consumption of energy carriers for any tech-
nology, considering efficiency losses in the process;
• Link locations by distribution lines, to allow carrier flow;
• Link the storage in one timestep to the storage in the previous
timestep, accounting for standing losses; and
• Ensure all demand is met at all locations in the network.

Additionally, we consider:

• Binary purchase constraints, in which a technology has a fixed
purchase cost associated with any non-zero capacity. This combines3 For a detailed mathematical formulation, readers are referred to [35,36].

B. Pickering, R. Choudhary Applied Energy 236 (2019) 1138–1157

1141



Fig. 3. Case study districts.

Table 1
Bangalore district node details.

Node A B C D E F G H I J K EC1 EC2 EC3 EC4 N1

GIA (m2) 5,440 36,586 12,650 22,400 17,184 78,086 46,582 93,064 23,846 178,496 39,504 N/A N/A
Roof area (m2) 2,720 6,098 3,162 5,600 8,592 11,155 11,646 18,613 5,962 22,312 7,900
Technologies PV, AC, DG, GridE ECh, CCHP, StoreT, GridE

Fig. 4. Bangalore case study input demand profiles, grouped by typical day, and energy type. Profiles have low opacity such that darker sections indicate significant
profile overlap. ‘_we’ = weekend, ‘_wd’ = weekday.
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Fig. 5. Cambridge case study input demand profiles, grouped by typical day, archetype, and energy type. Profiles have low opacity such that darker sections indicate
significant profile overlap. See Table 3 for typical day dates and Table 2 for buildings per archetype. ‘_we’ w¯eekend, ‘_wd’ w¯eekday.
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Fig. 5. (continued)
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with a per unit capacity cost on investment, to better represent
technology costs;
• Inter-cluster storage, which allows us to track stored energy between
all days in our reference year, even though we are only optimising
for 12/24 typical days; and
• A rooftop space limit for solar technologies, which limits the com-
bined capacity of all solar technologies being considered.

A summary of the mathematical formulation of all constraints can
be found in Appendix A and the full mathematical formulation can be
found online.4 Models were run on a high performance computing
cluster, with optimisation undertaken by the Gurobi solver (v7.5.1).

2.4.1. Side note on tractability of optimisation models
Much of the work in this study is driven by a requirement for

tractability. In formal terms, tractability might be considered as the
necessary condition for the problem to be computed in polynomial
time, i.e. within complexity class P [42, p.4]. Thus NP complete and
NP Hard (where P NP) would be considered intractable. This
classic definition is somewhat questionable, as it is clearly more prac-
tical to solve a problem in the order of 2 N0.1 (exponential) than in the
order of N 20 (polynomial) for a large N [43]. Additionally, a problem
that has complexity in the order of N 2 becomes impractical to solve if
the number of computations, N, is large (e.g. 1010). Goderbauer et al.
[44] recently formalised the complexity of MINLP energy system pro-
blems as NP Hard but did not discuss MILP problems. In fact, model
complexity is rarely formalised. Instead, we interchange tractability
and practicality. As such, we consider a problem to be tractable if it
reaches an optimal (and feasible) solution in a ‘reasonable’ amount of
time. What is reasonable depends on the modeller and the computa-
tional power at their disposal. Here, we consider our models to be
tractable if they take less than 12 h to solve on a high performance
computing cluster. We cannot model the infinite number of future de-
mand profiles, hence the need for scenarios. Nor can we achieve
tractability without a small number of scenarios and time steps, leading
to scenario reduction and time clustering.

2.5. Evaluating decisions

It is likely that any energy system, no matter how carefully de-
signed, will need to cope with unexpected future demand. In the con-
text of this study, a robust decision is one which ensures that demand
will be met in any realised future. By using SO, we aim to improve

decision robustness. However, the requirement for SR, to maintain
tractability, already reduces the number of future demand variations for
which we optimise. An effective means of assessing the consequence of
our decisions, as well as the effectiveness of the SO approach, is to
undertake out of sample (OOS) testing [35]. Although used in both SO
[45,39] and robust optimisation [46,47], OOS scenario testing is not
common in the majority of studies which incorporate uncertainty.

In our OOS tests, investment decisions have already taken place,
following either single scenario or multiple scenario optimisation. The
investment technology capacities are fixed, before being exposed to
new operating conditions to evaluate their performance. The resulting
optimisation model is concerned only with minimising operational
costs, with the possibility to draw on a ‘slack’ variable to balance supply
and demand. The slack variable imposes such a high cost on its use that
it would only be chosen by the model in instances where there is no
other way to balance the system. A robust investment portfolio is one
which continues to meet demand, or depends relatively little on the
slack variable, when faced with new data.

3. The illustrative studies

The two case studies represent very different techno-economic-
geographic contexts and hence test different types of demand (cooling
dominated versus heating dominated) and associated technologies.
Their energy systems are optimised for minimising total costs (invest-
ment and operation, normalised to one year) following the same steps.
However, for each, we use a different manner of processing historical
energy demand data for the scenario generation step. The reason for
this is solely due to the difference in nature and volume of data avail-
able from the two sites. At the same time, it is true that historical data
from buildings is never uniformly available across sites, and future
applications of our proposed work may devise their own techniques for
processing their demand data as long as they preserve key properties for
estimating future possible demand scenarios. We will discuss these in
the following section.

3.1. Bangalore, India

A collection of office buildings within Bangalore, India have been
selected, defining an illustrative district. Fig. 3a shows each of these
buildings, and the nodes used to represent them. Most nodes consist of
several buildings, which are connected at the same point on the district
cooling network. Building floor area (Table 1) has been inferred from
the external footprint and number of floors for each building. As the
development is fictitious, no other information is known about these
buildings; we use only their relative size and position to test our
modelling approach. We propose four energy centres, at different po-
sitions on the periphery of the district. Each is sited on a currently
undeveloped piece of land, according to satellite data.

The demand data used in this study has been acquired from a single
office building in Bangalore. Five-minute sub-metered data is available
for this building for a range of end-uses. These end-uses include air
conditioning, lighting, and uninterruptible power supply. The data was
captured from December 2015 to November 2016 (inclusive) and is

Table 2
Cambridge district node details.

Node desk_research (10 nodes) lab_research (17 nodes) desk_commercial (18 nodes) lab_commercial (1 node) Energy centre

GIA 86,774 176,173 181,908 9,473 N/A
Roof area 26,715 72,648 69,824 5,535

Technologies PV, NGB, ST, StoreE, StoreT CHP, StoreT, GridE, GridNG

Table 3
Dates corresponding to Cambridge term times and vacations (Vac), as used to
define typical days for the Cambridge case study. Dates given for 2015 in month-
day format. ‘Vac3’ dates wrap from December to January.

1 2 3
Term 01–13 to 03–13 04–21 to 06–12 10–06 to 12–04
Vac 03–14 to 04–20 06–13 to 10–05 12–05 to 01–12

4 https://github.com/calliope-project/calliope.
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shown clustered by typical day in Fig. 4. Air conditioning electrical
consumption is converted to cooling demand by using the variable re-
frigerant flow system coefficient of performance (COP) of 1.6. Current
literature would suggest a COP between 3 and 4 [48]. The low COP is
that which was recorded for the system in operation within the metered
office building. Given that the system has been in place for many years,
older literature suggests that it is not an unreasonably low COP. Xia
et al. [49] recorded a COP lower bound of 1.9, while Zmeureanu [50]
found their rooftop units to have operational COP of 1.68 ±0.19 and
1.86 ±0.37, which compared particularly unfavourably to the rated
COP of 2.9. To match the resolution of climate data, the five-minute
metered consumption was resampled to hourly data.

There are clear trends visible in Fig. 4 per typical day, with week-
ends exhibiting a greater variation in demand. As expected, climate
clearly affects cooling demand, with high April external temperatures
causing high cooling requirements. In May, there are many days with
zero demand. These likely correspond to building shutdown days in the
Summer holiday period. Some zero demand days may be caused by
metering errors, but this top-down method for assessing demand data
makes it difficult to assess whether they are erroneous points or truly
zero-demand days.

Table 1 shows the technologies that we allow at each node. There is
no requirement that a given technology is installed at any particular
node, as the investment step of the optimisation will decide this. At a
building level, national grid electricity (GridE), a diesel generator (DG),
and photovoltaic solar panels (PV) are possible technologies to meet
electricity demand. In addition to the district cooling system, individual
air conditioning units (AC) can meet cooling demand. In the central
energy centres, a large scale electric water chiller (ECh) or a combined
cooling, heat, and power plant (CCHP) can be installed. The CCHP is
either a diesel or biomass fuelled generator, whose waste exhaust heat
is redirected through an absorption chiller to produce cooling. Thermal
storage (StoreT) is possible at the energy centre, but due to the rela-
tively low energy density of cold water, we do not consider StoreT at a
building level. Technology costs are collated from various sources.
Where costs specific to India were not available, values from the (UK
specific) SPON’S mechanical and electrical services price book [51]
have been used, assuming a currency conversion factor of 90 INR/GBP.
More detail on the district and technology definitions is available on-
line,5 including costs and their sources.

3.2. Cambridge, UK

Unlike the Bangalore ‘representative’ district, the Cambridge district
is based on intended development by the University of Cambridge. The
West Cambridge site is a campus of the University, in which there exists
already a number of academic, residential, leisure, and commercial
buildings. The plan6 is to construct 383,000m2 of new floorspace,
through a combination of greenfield and brownfield development (the
latter directly replacing current buildings). According to the masterplan
[28], the district will have a 42 GWh annual heating load, 70% met by
Combined Heat and Power (CHP), and 88 GWh annual electricity load,
29 GWh of which will be met by the same CHP. To determine this ex-
pected load, the buildings on the proposed site have been categorised
by archetypes: ‘desk-based research’, ‘medium intensity laboratories’,
and ‘high intensity laboratories’. Our chosen archetypes are further
disaggregated in this study, into commercial and research usage. This
different categorisation follows consultation with Aecom, the con-
tracted consultants for the energy plan of the West Cambridge site.
Thus, four building archetypes are considered: ‘Desk-based Commer-
cial’, ‘Desk-based Research’, ‘Lab-based Commercial’, and ‘Lab-based
Research’.

The masterplanners used expert judgement and/or the mean de-
mand to inform the expected demand of proposed buildings within each
archetype on the West Cambridge site. We have started from the same
position, using existing buildings on the University estate to inform
expected demand within the district. Gas and electricity consumption
data for 17 buildings have been accessed from across the University. We
assume that an 80% efficient boiler is used to meet heat demand from
the incoming gas. As with our Bangalore case, we cluster our input into
typical days. Many of the buildings are academic, so we have chosen to
cluster the data based on weekends/weekdays and the University of
Cambridge term dates (Table 3). This gives us 12 typical days. Different
profile sub-clusters originating from different buildings within the same
archetype are evident in Fig. 5. In some cases, this can lead to an order
of magnitude variation in the possible peak on a given day. Electricity
demand profile shapes are more pronounced than heating demand
profiles, as in the Bangalore data. Although, there is a pronounced
morning heating peak in desk-based research/commercial buildings. On
weekends, demand is lower but the profile shape is more sporadic,
particularly in the ‘lab’ archetypes. This is likely caused by lab

Table 4
Calculated bandwidths for each KDE subset in the Cambridge case study input dataset. Underlined values refer to those selected for use with a ‘top-hat’ kernel; all
others use a ‘gaussian’ kernel. Background bars highlight relative magnitude of bandwidth.

5 https://github.com/brynpickering/bangalore-calliope.

6 More detail on the West Cambridge plan can be found at http://www.
westcambridge.co.uk/.
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occupants choosing to work on weekends and unsupervised, energy
intensive lab experiments taking place over weekends. The buildings
require less heating in summer (‘Vac2’), with hot water requirements
being the likely cause of the remaining heat demand on these typical
days.

Buildings within our chosen archetypes are scattered across the

development site. Fig. 3b shows the proposed CHP would be based in an
energy centre at the western edge of the district. The heating network
follows the road network in connecting to the buildings. We also in-
clude a gas network cost along the same network, to account for the
installation of gas pipework. To make the most of a possible energy
centre, we also include the possibility of a large-scale ground source

Fig. 6. Total hourly district demand, as sampled for 500 scenarios for the year 2016. Mean profiles are shown as black lines. To ensure clarity, we have not displayed
the profile of all 500 scenarios, instead the minimum to maximum range of all scenarios is given as a shaded region.
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heat pump (GSHP) and thermal energy storage (StoreT) to enter into
the district system. Nodes in the district correspond to buildings of
different archetypes, with roof area available for solar technologies and
building-level technologies made available, if a district system is not
favourable (see Table 2). Building-level heat demand can be met by
natural gas boilers (NGB) or solar thermal panels (ST), and can be
stored using building-level StoreT. Photovoltaic solar panels (PV), grid
electricity (GridE), and CHP output can meet electricity demand.
Electricity can also be stored in batteries (StoreE) at a building level.
Technology costs are primarily taken from the SPON’S mechanical and
electrical services price book [51]. More detail on the district and
technology definitions is available online, including costs and their
sources.7

4. Results & discussion

4.1. Scenario generation

Different methods were used to generate scenarios for the Bangalore
and Cambridge case study districts. The Bangalore samples were gen-
erated prior to this study, using fPCA [32]. In this study, the samples

were applied to case study buildings by scaling them to building floor
area and randomly assigning them to days corresponding to our pre-
defined typical days.

For Cambridge, the acquired data included several buildings de-
scribing each archetype. Consequently, KDE was applied to multi-
building sets. As we use KDE for each energy type (2), archetype (4),
and typical day (12), we require our limited observations to generate 96
probability density functions. To make the most of our observations, 5-
fold cross-validation was used to calculate the best-fit bandwidth in the
range (0, 1] with either the ‘gaussian’ or ‘top hat’ kernel, using the
Python package Scikit-learn [52] for KDE and Hyperopt [53] for opti-
mising the error. Table 4 shows the resulting bandwidths and kernels
following 5-fold cross-validation. Most probability density functions
(PDFs) are described using a gaussian kernel and the bandwidth varies
from 0.01 to 0.49. A larger bandwidth refers to more variable data,
requiring a sufficiently smoothed PDF to describe the full dataset.

Fig. 6 gives the range of all the 500 scenarios of district-wide energy
demand per utility for both case studies. Mean demand profiles are
shown as lines and minimum to maximum range of any scenario is
given as a shaded region (also marked on the right side of the y-axis).
Each scenario is an aggregation of the demand for each building and
every day in the year. The demand in Bangalore is described with 24
distinct typical days (weekend and weekday per month) and the de-
mand in Cambridge is described with 4 archetype buildings, each with

Fig. 7. Total district demand compared to independently optimal objective function value for 500 demand scenarios. Scenarios chosen to represent the full set,
following scenario reduction, are highlighted and numbered. The distribution of demand and objective function value is given outside the scatter plot.

7 https://github.com/brynpickering/cambridge-calliope.
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12 typical days (academic term times and vacation). These typical days
are evident in the samples, particularly between weekdays and week-
ends. Electricity demand shows less variation in throughout the year
than thermal demand. Indeed, the variation in thermal demand is not
sufficiently well described by the choice of typical days. A greater
number of typical days would better represent the data, leading to
smoother transitions in both case studies.

There is a high possible deviation from the mean in any of the 500
scenarios, particularly for electricity and heat demand in Cambridge
(Fig. 6b). The demand in any time interval could range from 0.5 to 1.5
times the mean. Within a set of days associated with the same typical
day, there is much less variation in the peak demand. This variation
remains below 1MW in the mean curve and 5MW in the min/max
range. As the profiles in Fig. 6 aggregate all buildings in the district, the
deviation of the profile mean and min/max is lower than that which is
visible on a building-level.

The total annual demand of the Cambridge district is approximately
1.61 times the amount predicted in the energy masterplan. The total
annual demand is 142 GWh electricity and 68.2 GWh heat compared to
88 GWh and 42 GWh respectively predicted by the masterplan. The
masterplan is based on a single archetypal annual demand mapped to
all buildings of that archetype. As such, it is possibly less accurate than
our estimate, suggesting that a greater demand can be expected on the
site. We cannot validate either our result or that of the masterplan until
all buildings are commissioned in approximately ten years’ time. In
Bangalore, we cannot compare the demand to a district prediction, as
no masterplan exists for this illustrative study.

As aforementioned, we model only typical days, not the full year
given in Fig. 6. Thus, only one day can be used to represent each typical
day in the optimisation. For each typical day (e.g. January weekday),
the mean profile of all days represented by it (e.g. January weekdays) is
used as the model input demand. The impact of a typical day on the
objective function is scaled to the number of days in the year it re-
presents. The impact of just using the typical days, instead of the full
timeseries, can be calculated ex-ante. In Cambridge, the mean annual

demand for electricity and heat demand shown in Fig. 6b varies by
+5.6% & −3.5%, respectively, compared to the description of the
annual demand used in the optimisation. This change is more pro-
nounced in Bangalore, where electricity and cooling vary by +7% &
+20%, respectively. Time dimension reduction is standard practice in
MILP modelling, as previously discussed in Section 2.1. Optimisation
results will differ due to this reduction [24], but we have implemented
intra-cluster storage management [54,55] to help improve the accuracy
of the results.

4.2. Scenario reduction

When discussing the methodology in Section 2.2, we introduced two
approaches to scenario reduction. Figs. 7a and b allows us to compare
two metrics describing our 500 scenarios: annual total system demand
and independently optimal objective function value. The better the
correlation between the two metrics, the more likely we could use the
simpler of the two (annual total system demand) for scenario reduction.
Annual demand varies in Cambridge from 212 GWh/a to 220 GWh/a,
compared to an objective function value variation of 20.2 million GBP
to 31 million GBP (Fig. 7a). There is a trend for higher system cost with
an increase in total system demand. However, the highest objective
function value is associated with a system demand of 218 GWh/a and
the lowest objective function value with a system demand of 213.8
GWh/a. There is also a distribution skew in Cambridge in objective
function value, towards lower cost, that is not exhibited in the total
system demand. These factors all reinforce the use of the additional step
in scenario reduction, where an independently optimal objective
function value was sought for each of the 500 scenarios. In Bangalore,
the use of the additional step is less clear. There is a similarly small
percentage variation in total system demand, from 56 GWh/a to just
over 57 GWh/a (Fig. 7b). But the variation in objective function value,
321 million INR to 339 million INR, is relatively well correlated to the
demand. Still, the lowest and highest demand scenarios are not the
lowest and highest cost scenarios.

Table 5
Description of the 16 reduced scenarios chosen to represent the full set of 500, given to three significant figures. Scenarios are ordered by objective function value
(left to right ascending), as this is the value on which SR takes place. Highest values in each category are highlighted in red colour.
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The reduced scenarios chosen to represent the full set are also
highlighted in Fig. 7. They are more bunched towards the centre of total
system demand in Cambridge, compared to the greater spread exhibited
in Bangalore. As a result, the scenario with the highest objective
function value in Cambridge (237) is the 12th highest total system de-
mand scenario. In Bangalore, the corresponding scenario (138) is the
second highest total system demand scenario. Table 5 inspects the re-
duced scenarios in detail. We can see that maximum thermal and

electricity demand is not given by the same scenario in either district.
The proportion of scenarios a single reduced scenario represents ranges
from 1% to 11.2%. We use this to weight each scenario in the objective
function. The lower weight reduced scenarios are, as expected, those at
the extremes of objective function value. Thus, costs incurred in an
extreme scenario will have approximately 10 times less influence on the
objective function value than in a moderate scenario (see Eq. (1)). In
the optimisation, this translates to a risk-based compromise, where we
are willing to accept a relatively high operational cost in unlikely fu-
tures (our extreme scenarios) as they have an order of magnitude lower
impact on objective function value.

4.3. Scenario optimisation

Optimisation of the 16 reduced scenarios by SO took 4.12 h and
8.51 h to reach a solution for the Cambridge and Bangalore cases, re-
spectively. The results follow similar trends in both case studies.
Neither considers an energy centre and district network to be particu-
larly important (Fig. 8). This is caused by the prohibitive cost of laying
thermal network pipework, a cost not often included in district network
studies. Albeit small (<2MW), a centralised electric chiller with a
higher efficiency is considered in an energy centre in the Bangalore

Fig. 8. Installed capacity of technologies to achieve the optimal objective
function value in both mean (single scenario) and SO cases. Building-level
technologies have been aggregated over all demand nodes. The contribution
from each demand node to the total technology capacity has been differentiated
with a colour gradient. Although, in some cases (e.g. ‘ST’ in (a)), not all nodes
have installed capacity. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 9. Contribution of investment cost to the objective function value for all
500 independent scenarios, compared to mean and SO contributions. The 500
scenario costs form the histogram, while the singular results from the mean
scenario and from SO have been pinpointed on the x axis.
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case. The optimisation deems its small size relative to the total cooling
demand to still be worth the land purchase and pipework cost. Practi-
cally, it could probably fit within one of the existing structures, which
would make it more financially viable. Renewable energy technologies
are not particularly important in the Cambridge case. Rather than in-
creasing thermal storage to handle uncertainty in the use of heat from
solar thermal panels, it is more cost optimal to add several MW of boiler
capacity. This is less of a concern in Bangalore, where electricity from
solar photovoltaics is sufficiently cost beneficial to be installed across
the maximum available roof space in all optimisation runs. Other than
the decreased dependence on solar thermal energy in Cambridge, there
is little difference in installed energy capacity between the mean and SO
runs.

Investment costs are high as a result of SO: +6.4 million GBP in
Cambridge, +7.5 million INR in Bangalore, compared to the mean
investment (Fig. 9). Compared to the 500 independent scenario runs,
the investment cost is in the top 5% for SO in both case studies. This is a
high investment penalty, for little additional capacity investment. It is
unlikely that system designers would be willing to accept this invest-
ment increase unless it led to a clear improvement in system robustness.
No matter the scenario, operating costs are higher than investment
costs. The operating costs for each of the 16 scenarios are based on the

same technology investment portfolio, but with a different set of de-
mand profiles being realised. In the Cambridge case, the operating
costs, no matter which scenario is realised, will be higher than the costs
incurred according to the result of the mean scenario (Fig. 10a). This
does not make the mean model better, as the cost it portrays relies on
the demand being exactly the mean of the uncertain profiles. It cannot
necessarily meet demand in the future scenarios used in SO, let alone
doing so at a lower cost. The spread is greater in the Bangalore case,
where most scenarios have a lower operating cost than the mean case,
including an operating cost lower than any of the 500 independent
scenarios (Fig. 10b). This possible lower operating cost is balanced by a
higher investment cost, hence why such a low operating cost was not
seen when running the 500 scenarios through independent optimisa-
tions.

4.4. Out of sample tests

When conducting SO, demand must be met in all scenarios. This is
also the case in the independently run scenario models. We can test the
robustness of the optimal technology portfolios in select models by re-
running our 500 scenarios with fixed technology capacities and cap-
turing the resulting supply/demand imbalance. The optimal technology
portfolio of four models are considered in this section: mean, SO,
highest objective function, and highest total system demand. In each
test, we run the optimisation with fixed capacities and a ‘slack’ decision
variable in the system balance constraint. In any time step where the
supply cannot match demand due to lack of capacity (or over-capacity,
in the case of unwanted energy produced by e.g. solar thermal panels),
the slack variable will record the imbalance. The greater the total im-
balance across the 500 scenarios, the less robust the technology port-
folio.

SO leads to a more robust technology portfolio, in both Cambridge
(Fig. 11) and Bangalore (Fig. 12). By considering our 16 scenarios in
SO, we have ensured that we cover a much greater range of futures in
our system design, without increasing the system cost above the ‘worst
case’. We can gain a 50× and 25× reduction in system imbalance in
the Cambridge and Bangalore districts, respectively if we use SO instead
of the mean scenario. Comparing to our extreme independent scenarios,
SO retains a more robust solution. If we spent more on technology in-
vestment by designing to the result of the highest objective value sce-
nario it would be less robust than SO. A similar result would be ob-
tained by designing to the result of the highest total system demand
scenario. In fact, it is only the SO investment portfolio that leads to
multiple scenarios having no imbalance. Granted, using 16 scenarios
has not ensured full balancing when testing against all 500 scenarios, as
seen in Figs. 11b and 12b. This is an expected result of our scenario
reduction process, much in the same way that there are likely to be
more extreme scenarios than those encompassed by our initial 500
scenarios. Currently, these simplifications are a necessity for tract-
ability.

Although more robust, the increased monetary cost for SO may not
be worth the risk reduction. The total worst case imbalance in any
scenario is never greater than 1.6 GWh in Cambridge, 60MWh in
Bangalore. This compares to annual system demands of >200 GWh in
Cambridge and 56 GWh in Bangalore, 2–3 orders of magnitude
greater than the imbalance. We drastically reduce the imbalance in the
SO case, but it is of small consequence.

4.5. The need for a new objective

Conventional building-level systems (Boiler & AC) are flexible at
meeting varying demand and are still relatively cheap. Hence, they are
the choice for meeting the demand in a district, whether or not we are
aiming for robustness to future demand scenarios. The most efficient

Fig. 10. Contribution of operation cost to the objective function value for all
500 independent scenarios, compared to mean and SO (16 scenarios) con-
tributions. The 500 scenario costs form one histogram and the cost of the 16 SO
future realisations form another. The singular result from the mean scenario has
been pinpointed on the x axis.
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systems, such as the CHP and CCHP cogeneration technologies, have
not been chosen. This is particularly problematic when making deci-
sions under uncertainty, where existing technologies such as building-
level air conditioning and boilers are better placed to handle varying
demand profiles. A new objective is required if environmental agendas
are to be prioritised in the design of energy infrastructure. This may be
the inclusion of the environmental impact, be it only operational or for
full technology lifecycles. In including environmental concerns in the
objective function, we can also extend our work to include risk aversion
by considering unmet demand as being met by a highly polluting
backup system. The existing optimal solutions also depend heavily on
having a national grid connection and are thus not robust to inter-
mittency nor the requirement for energy autarky.

5. Conclusion

Decision making under uncertainty can be improved by the com-
bination of new sampling and optimisation techniques. We have shown
in this study that by following a 3-step method, we can design district
energy systems which are more robust than traditional, single scenario
models to the risk of not meeting a range of future demand. These three
steps are scenario generation, scenario reduction, and scenario opti-
misation. In scenario generation, we use multivariate nonparametric

sampling to produce 500 future demand scenarios from historic
building-level stochastic consumption data. Using scenario reduction,
we are able to select 16 scenarios for scenario optimisation, without
misrepresenting the probability distribution of our 500 initial scenarios.
With 16 representative scenarios, we can run tractable scenario opti-
misation models.

We applied these three steps to illustrative case studies in
Cambridge, UK, and Bangalore, India. By using out of sample scenarios,
unmet demand has been quantified for scenario optimisation and single
scenario technology investment portfolios. Robustness to unmet de-
mand increased by 50× in the Cambridge case, and 25× in the
Bangalore case when using scenario optimisation derived over mean
scenario derived technology capacities. However, this robustness comes
at a high cost: +6.4 million GBP and +7.5 million INR investment in
the Cambridge and Bangalore cases, respectively. These results have
been applied directly to a masterplan-level site (Cambridge), showing
that such a method can be readily utilised by practitioners.

However, given increasing calls to reduce the environmental impact
of infrastructure, our cost optimal solutions are not helping. Contrary to
existing literature, district energy systems are not considered cost op-
timal in our study. Incumbent energy technologies are preferred, such
as building-level boilers and AC. There is some reliance on rooftop re-
newable solar technologies, for heat and electricity. However, increased

Fig. 11. Cambridge case study system unmet cooling and electricity demand when running out of sample (OOS) optimisation tests. the 500 OOS scenarios are those
generated in SG. Technology capacities have been fixed in the tests to the result of optimising the a. mean scenario, b. 16 reduced scenarios in SO, c. scenario with
highest objective function value (when optimised independently), and d. scenario with the highest total annual demand. Cumulative imbalance is the rolling sum of
the unmet demand from individual tests.
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robustness leads to reduced dependence on solar thermal technologies
in our Cambridge case study. The lack of energy centre in Cambridge
and minimal centralised chiller production in Bangalore suggests that a
new objective is required within scenario optimisation. Such an ob-
jective would need to prioritise emission reduction or, at least, penalise
the use of the most polluting technologies. Future work will concentrate
on reformulating the objective function to this end. Additionally, we
will test our scenario optimisation derived technology capacities for
robustness against national grid intermittency, a particular source of
uncertainty in our Bangalore case study.
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Appendix A. Model mathematical formulation

The mixed integer linear programming (MILP) framework used to model our two districts is typical of district energy system modelling. Sets,
decision variables and constraints are summarised in this appendix. Decision variables are those variables which are unknown at the start of the
optimisation. Their values are selected by the optimisation algorithm so that they satisfy the realisation of the objective function value. Constraints
are placed upon the decision variables, to ensure they cannot take values which are either physically or mathematically impossible. For a more
detailed understanding of the model implementation, readers are referred to the Calliope software repository.8

Fig. 12. Bangalore case study system unmet cooling and electricity demand when running out of sample (OOS) optimisation tests. the 500 OOS scenarios are those
generated in SG. Technology capacities have been fixed in the tests to the result of optimising the a. mean scenario, b. 16 reduced scenarios in SO, c. scenario with
highest objective function value (when optimised independently), and d. scenario with the highest total annual demand. Cumulative imbalance is the rolling sum of
the unmet demand from individual tests.

8 https://github.com/calliope-project/calliope.
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A.1. Sets and decision variables

Sets

n N Set of geographic nodes in the system
n n L( , )r Node pairs, defining distribution links

x X Set of available technologies
t T Set of operational timesteps
c C Set of energy carriers

Subsets

store Storage technologies
conv Conversion technologies
supply Supply technologies
dem Demand technologies
dist Distribution technologies
ex Technologies which can export a carrier
prod Technologies which can produce a carrier
con Technologies which can consume a carrier
area Technologies which use physical area

Decision Variables

infP [0, )n x
cap

, Energy capacity (kW)
infS [0, )n x

cap
, Storage capacity (kWh)

infR [0, )n x
area

, Resource capture area (m2)
Y {0, 1}n x, Purchase switch

+ infP [0, )n x t c, , , Energy carrier production (kW)
infP ( , 0]n x t c, , , Energy carrier consumption (kW)
infP [0, )n x t c

ex
, , , Energy carrier export (kW)

infS [0, )n x t, , Stored energy (kWh)

A.2. Constraints

Constraints are applied across the full sets of each decision variable and parameter indices, unless explicitly noted in the constraint.

A.2.1. Technology capacity
Our capacity decision variables must be kept below a given parameter, denoted with the subscript max.
Storage capacity:

S n x N XS ( , ) ( , )n x max
cap

store
cap

, n x,

Energy capacity:

×P cost
P

P
Y , if 0

, otherwisen x
max
cap

n x purch

max
cap

cap
,

,n x

n x

,

,

Resource capture area:

R n x N XR ( , ) ( , )n x area max area
area

, , n x,

At each node, there is a limit on the available area:

available areaR _
x X

n x n
area

,

Area use is linked to energy capacity of a technology, where area is the area required per unit capacity:

= × n x N XR P ( , ) ( , )n x n x area area
area cap

, , n x,

Storage capacity is linked to energy capacity by the charge rate:

× charge rate n x N XP S _ ( , ) ( , )n x n x n x store
cap cap

, , ,
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Technologies which define a distribution link have the same capacity:

= x XP Pn x n x dist
cap

, ,r
cap

A.2.2. Dispatch limits
Carrier flow is limited by the technology capacity.
Carrier production:

+ n x c N X CP P ( , , ) ( , , )n x t c n x prod
cap

, , , ,

Carrier consumption:

× n x c N X CP P1 ( , , ) ( , , )n x n x t c con
cap

, , , ,

Stored energy:

n x N XS S ( , ) ( , )n x t n x store
cap

, , ,

A.2.3. Energy balance
At each timestep, carrier flows must balance. This includes a system-wide energy carrier balance, as well as technology specific balances.
All demand must be met at each node, with no slack for excess supply:

+ + =+P P P 0
x

n x t c n x t c n x t c
ex

, , , , , , , , ,

Demand technologies, where R is the (-ve) timeseries demand:

× = R n x c N X CP ( , , ) ( , , )n x t c n x t n x t dem, , , , , , ,

Distribution technologies, where is the link efficiency:

× = + x c X CP P1 ( , ) ( , )n x t c n n x t n x t c dist, , , ( , ), , , , ,r r

Conversion technologies, where is the technology conversion efficiency:

× = + n x N XP P1 ( , ) ( , )n x t c n x t n x t c conv, , , , , , , ,con prod

Multiple-carrier conversion technologies (e.g. CHP, CCHP), where p2 / p3 are the additional output carriers of the particular technology and ratio
is the carrier conversion ratio (e.g. the heat to power ratio):

=+
+

p p p n x N X

P

{( ), ( )}, ( , ) ( , )

n x t c ratio

conv

P
, , ,

2 3

prod

n x t cp
n x cp

, , ,

, ,

Supply technologies, where force R_ is a boolean parameter dictating whether an available resource has to be consumed when available (e.g. un-
curtailed PV) or not (e.g. diesel fuel), and is the technology conversion efficiency:

=+ R force R is True
R force R is False

n x c N X C

, if _
, if _

( , , ) ( , , )

n x t n x

n x t n x
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, , ,
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n x t

, , ,

, ,

Supply technologies with resource given as per unit area, where force R_ is a boolean dictating whether an available resource has to be consumed
when available (e.g. un-curtailed PV) or not (e.g. diesel fuel), and is the technology conversion efficiency:

= ×
×

+ R force R is True
R force R is False
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R
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Storage technologies, where Sloss is the storage standing loss rate, res is the timestep resolution and is the charge/discharge efficiency:

= ×

×
+
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A.2.4. Cost
The cost decision variables given in Eq. (1) are auxiliary variables, calculated from the summation of decision variables given above.
Investment cost, where cost refers to the cost associated with each capacity and AF is the annualisation factor,

+
rate

rate1 (1 )

int
int Ln x,

, to scale the

investment cost of each technology to one year based on its lifetime L and interest rate rateint (10% in this study):

= × × +

× + × + ×

AF cost

cost cost cost

cost S

P R Y

(

)
n x
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,
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,
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Operational cost, where cost refers to the cost associated with carrier production, consumption or export. Note that costex is negative, to signify a
revenue from export:

= × +

× ×

+ cost

cost cost

cost P

P P

(

)
n x c t

n x c t prod

n x c t ex n x c t con

operate

ex
, , ,

, , ,

, , , , , ,

n x t

n x t n x t

, ,

, , , ,

Appendix B. Technology characteristics

See Table B.7.
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