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Abstract 

Increasing complexity of building energy systems has led to a wide range of methods 

to minimise cost of meeting demand for all types of energy. Metaheuristics and mixed 

integer linear programmes (MILP) are the two most prevalent optimisation methods 

in the field, with relative advantages which have not previously been compared under 

common criteria. The principle objective of this paper is to scrutinise these two 

optimisation methods when applied to a problem of finding the optimal operational 

schedule of an energy system serving a hotel. 11 technologies are modelled by both 

methods, but all exhibit nonlinear characteristics which must be linearised for use in 

MILP. Comparison of the two models results in variation between objective function 

below 1%, where piecewise linearised MILP gives the most optimal solution. The time 

to solution varies by orders of magnitude between models: 0.08s for simple linear 

MILP, 1.64s for piecewise linear MILP and 274s for metaheuristic. System designers, 

or controllers, must decide between solution time and realistic representation of 

technologies when choosing an optimisation method, a compromise which may be 

balanced by piecewise optimisation. Further, Proposed operation schedules vary 

slightly between methods, allowing some subjectivity in exact operation schedule, 

without compromising objective function. Metaheuristics favours qualitative 

subjectivity, while MILP favours quantitative subjectivity.  

Keywords - Mixed Integer Linear Programming, Epsilon constrained differential 

evolution, Energy System Optimisation, Metaheuristics 

1. Introduction  

HVAC systems of large non-domestic buildings often comprise of 
multiple sub-systems, the operation schedules of which must be optimised for 



energy efficiency and cost-effectiveness. The complexity of scheduling 
optimal operation of such systems increases when multiple combinations of 
sub-systems can provide the same energy services at any given time. In the 
optimisation literature, research has demonstrated two different methods to be 
a viable approach for solving such problems: metaheuristic methods [1]–[4] 
and the mathematical method of mixed integer linear programming (MILP) 
[5]–[7]. However, studies have reported challenges associated with each 
method [2], [6]. Metaheuristic methods can find ‘good-enough’ solutions to 
highly nonlinear problems in a short time frame by searching a range of 
possible solution points, but the optimality of the solutions is difficult to 
guarantee, particularly for more complex systems [2]. Conversely, MILP 
models require nonlinear behaviours of HVAC systems to be simplified, 
which can lead to a deterministic and physically incorrect solution. 
Furthermore, the complex behaviours of certain technologies cannot be 
modelled. Indeed, commercial establishments were not considered in [5] due 
to the nonlinear nature of the cooling systems, while second law 
thermodynamics could not be used in [7] due to the need for temperature 
tracking. Where simplification occurs, MILP models often utilise rated 
operational efficiency of technologies used in a system, irrespective of 
subsequent load rate, e.g. [6]. 

In energy system modelling, there exists comparisons within the fields of 
metaheuristics and mathematical modelling, e.g. [8], [9]. However, little 
literature exists comparing metaheuristic and mathematical methods to each 
other. Ikeda [2] does so by benchmarking a range of metaheuristic 
optimisation methods against a dynamic programming (DP) model, but not to 
the more popular MILP due to the need for nonlinear characteristics. In the 
power electronics sector, enhanced PSO has been compared to MILP (referred 
to as the branch & bound method) [10]. However, the PSO inputs were 
linearised for comparability with the MILP model. 

It is evident that comparison has not been previously made between the 
most prevalent optimisation methods, metaheuristics and MILP, in which the 
system remains the same but the technology characteristics vary in 
correspondence with the requirements of the method. As such, the main 
objective of this paper is to examine the differences between a MILP and 
metaheuristic model applied to the energy supply optimisation of a non-
domestic property, given a common technology portfolio and constraint set. 
All technologies exhibit some degree of non-linearity in their energy 
consumption characteristics, which is fully and piecewise linearised for use in 
two MILP models. 

2. Case Study and Problem Formulation 

The energy system of a non-domestic building in Tokyo is modelled. A 
hotel comprising 20,000m2 total floor space was chosen from the Society of 
Heating, Air-conditioning and Sanitary Engineers of Japan (SHASE) database 



[11], due to its non-negligible demand for all considered energy. Also, 
Japanese Meteorological Agency (JMA) data on ambient conditions is used 
for energy consumption modelling of certain technologies. The price of 
purchased electricity varies by dynamic pricing, in which the price is inferred 
from the building electricity demand profile alongside a knowledge of the size 
and electricity price of the network power stations, as formulated in [1]. 

Optimisation is undertaken over a 24 hour period, at one hour intervals, 
for a representative summer day. A total of 11 technologies are included in the 
model with sufficient combined capacity to provide electricity, cooling and 
hot water to the hotel. Rated conditions for each technology, the technology 
abbreviations that will be used throughout this paper are given in table 1 [11]. 

A schematic of the energy system is given in figure 1, showing the 
interconnection of technologies. Only the PV and B can export electricity to 
the grid, while the CGS can only be used to meet building demand.  

Fig. 1 Energy system schematic, including flow temperatures. 

3. Technology Constraints 

a. Minimum load rate 

All technologies have a minimum load rate (table 1), below which the 
absolute consumption is constant, leading to a drastic reduction in efficiency. 
In the models, all technologies may operate below minimum load rate, except 
during simple linearisation (which cannot deal with the inherent discontinuity) 
and the CGS, which must operate at maximum capacity as a result of 
discrepancy in heat output affecting schedule comparison between models. 
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b. Cooling tower 

The TR, AR and HRAR utilise a cooling tower in order to effectively 
remove heat to the atmosphere. The performance of the cooling tower varies 
depending on external temperature, which can then be translated to lower 
average cooling water temperature (Tcw) and thus a lower average temperature 
of the respective technology refrigeration cycle, increasing its efficiency. This 
feedback loop can be modelled in metaheuristic methods as temperature can 
be tracked and iterations undertaken within the primary optimisation. It is not 
feasible to emulate this behaviour in MILP; hence, the metaheuristic model 
must be simplified to not account for Tcw changes. The effect of the omission 
on the final objective function result will be discussed. 

Table 1 Technology characteristics, as provided by SHASE [11]. 

  
Rated 

capacity 

Rated 

efficiency 

Minimum 

load rate 

Natural gas boiler (BB) 750kW 80.0% 0.2 

Cogeneration system (CGS)# 
352kWe 

300kWth 

40.5% 

34.5% 
0.2 

Photovoltaic solar panels (PV) 1.2kW/m2 13.0% N/A 

Turbo-refrigerator (TR) 2500kW 603% 0.45 

Absorption refrigerator (AR) 1500kW 125% 0.25 

Heat recovery absorption 

refrigerator (HRAR) 
1000kW 132% 0.30 

Air source heat pump (AHP)* 
550kW 

500kW 
358% 0.2 

Hot water storage (TES-H)** 
1200kWh 

360kW 
N/A N/A 

Cold water storage (TES-C)** 
10000kWh 

3000kW 
N/A N/A 

Battery storage (B) 
500kWh 

100kW 
N/A N/A 

#CGS produces electricity and heat. *Two AHPs were used in this study, with differing maximum 
capacity. **kWh = maximum storage capacity, kW = maximum charge/discharge rate. 

4. Objective function 

The objective function was set to minimise total operation cost as:  
 


 
Where p = hour in day, i = technology, Pe = price of purchased electricity, 

Ec = technology electricity consumption, Pg = price of purchased gas, Gc = 
technology gas consumption, Ep = Electricity purchased to meet building 
electricity demand, Se = price of sold electricity, Es = Electricity sold to grid. 



5. Optimisation methods 

a. Metaheuristic 

Metaheuristic methods belong to the research field of artificial 
intelligence and find the optimum solutions by trial and error. Ordinarily 
speaking, metaheuristics do not consider constraints, although almost all 
actual systems have many constraints. Thus, a method that can handle 
constraints is necessary. Epsilon differential evolution (eDE), developed by 
Takahama [12] and Mallipeddi [13], is one such method which exhibits 
efficiency improvements compared to other constraint handling methods. 

The algorithm of eDE used in this study is a development on that 
introduced in [1] and contains seven parts. It is run in MATLAB [14] as 
follows: 1) scatter 80 individuals into a search domain using random numbers; 
2) evaluate an objective function of each individual and set an initial value of 
epsilon; 3) Consider individuals only from the top 20% of the population, 
ranked by epsilon level comparison; 4) create a new solution at a constant 
mutation rate of 0.5, mixing three individuals in accordance with the original 
algorithm of DE; 5) evaluate the constraint violation that indicates how far the 
new individual is from a feasible domain; 6) compare the new individual with 
the old in terms of the objective function or epsilon, the better becomes the old 
individual in the next iteration; and 7) finally, return to 4), repeating 
generations up to 5000 times with cross-over rate decreasing exponentially 
from 0.8 and epsilon having to reach zero at 2000 generations. 

b. Mixed Integer Linear Programming (MILP) 

This paper undertakes MILP in the IBM ILOG CPLEX (CPLEX) 
environment [15], and builds upon the Distributed Energy Network 
Optimisation (DENO) model developed by Omu & Choudhary, introduced in 
[6]. CPLEX combines the branch & bound and cutting plane methods [16], in 
which an optimal relaxed solution (RS) is found by relaxing the constraints 
and pursuing avenues (branches) by re-application of the constraints, in 
different combinations. When a feasible solution is found along a branch 
(fitting all constraints) it becomes an incumbent solution until another branch 
is fully explored to find either an infeasible solution (constraint violation) or a 
new incumbent solution. Branches set to have the same result as the incumbent 
solution are not explored further, and are said to be fathomed by bound. 
Branching continues in this study until the incumbent solution is within 1% of 
the RS, with CPLEX initially removing some RSs by creating cutting planes, 
reducing the time needed to find this feasible solution. 

The DENO model has been simplified in scale, to the case of one building, 
but greater complexity has been applied in the representation of the 
technologies. Piecewise linearisation is undertaken, by use of integrated 
functions within the modelling environment, to represent variable technology 
efficiencies. 



6. Linearisation 

The eDE model utilises the fully nonlinear characteristic curves of the 
technologies in all calculations. Each technology exhibits a degree of 
nonlinearity, depending on output compared to maximum capacity, which is 
linearised for use in CPLEX. The simplest linearisation assumes that 
technology output changes linearly from minimum load-rate to maximum 
capacity. Piecewise linearisation segments a nonlinear curve into several 
connected linear curves. Bischi et al showed that piecewise linearisation is a 
powerful method of representing highly nonlinear technology characteristic 
curves in energy system modelling. Up to 10 pieces shows minimal increased 
computation time compared to the complete linear case, but location of piece 
connections has greater effect [17]. In this study four pieces along the 
consumption curves are used, set to concentrate on important locations on the 
curves including minimum load rate; load rate at maximum efficiency; and 
maximum load rate, with intermediate points placed to ensure reasonable 
curve following. Figure 2 shows the electricity consumption and COP curves 
of the TR, from nonlinear curve to simple linearisation. Simple linearisation 
leads to a large error over the operating range of the TR, constantly 
overestimating the required electricity input. Piecewise linearisation provides 
a reasonable fit throughout, maximum absolute error is 5.9kW (1.7%) for CGS 
gas consumption at 29.5% load rate, while maximum percentage error is 
15.9% (0.5kW) for AHP pump consumption at 75.6% load rate. For 
comparison, the simple linear maximum absolute error is 26.2kW (8.3%) for 
TR electricity consumption at 72% load rate, while maximum percentage error 
is 44.0% (4.68kW) for TES-H pump consumption at 46% load rate. 

(a) Electricity consumption                                    (b) Coefficient of Performance 

Fig. 2 Comparison of TR characteristic curves by level of linearisation. 

  



7. Results 

The piecewise linear case offers the best objective function result, albeit 
only 0.1% more favourable than the eDE case and 0.7% more favourable than 
the simple linear case (table 2).  

However, the optimum cases refer to slightly different operation 
schedules. Figure 3 shows the hot water schedule of both MILP piecewise and 
eDE, where there is a distinct difference in the utilisation of the TES-H. For 
instance, the boiler only operates in the first hour in the MILP case, storing 
heat to use for demand in the subsequent four hours, compared to constant 
boiler operation and storage charging in the hours 1-4 in the eDE case. Also, 
the CGS runs for two hours longer in the MILP model, compared to eDE. 

Table 2 objective function result for all characteristic curve linearisations. 

 
MILP simple 

linear 
MILP 

piecewise linear 
eDE 

Objective function (JPY) 710,542 705,293 706,013 

Fig. 3 Comparison of optimum operation schedules for meeting hot water for (a) piecewise 
linear MILP optimisation and (b) eDE optimisation.  
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a. Global Minimum 

As the eDE model is unable to find the optimal schedule when initialising 
decision variables randomly, the operation schedule of the MILP piecewise 
linear case was used to initialise the eDE decision variables. In doing so, the 
eDE model begins searching in the solution space in the vicinity of the MILP 
result. This results in an eDE solution of 705,050 Yen with the same operating 
schedule as the MILP piecewise linear result (e.g. figure 3a) where the 
difference of 240 Yen between the two results applied to the same operation 
schedule is a result of error in piecewise linearisation. 

b. Cooling Water Temperature Variation 

When allowing for Tcw to vary in the eDE model (ΔTcw), as discussed 
previously in section 4, an objective function result of 686,527 Yen is 
achieved: 3% lower than the MILP piecewise and initial eDE cases whilst 
following an almost identical schedule to the eDE case. As this variation only 
affects the cost of cooling, there is likely to be a further reduction in objective 
function result by initialisation of decision variables, as in 7.a.  

c. Solution Time 

Table 3 time to solution for each model run. 

As expected, the increased complexity of technology representation in 
eDE leads to a greater time to solution, in the order of several minutes (table 
3). CPLEX can solve to within 1% of the best bound in under 2 seconds, 
providing two orders of magnitude improvement on solution time. A further 
two orders of magnitude improvement are realised in the simplest MILP case. 
It is evident that the simplification required by MILP allows practically 
instantaneous results. 

8. Discussion 

This study has shown two primary differences between optimisation 
methods: the time to solution and operation schedule of hot water supply. 
Differences in objective function result caused by linearisation is under 1%. 
Depending on the purpose of an optimised schedule, different solution times 
are acceptable. An automated system which corrects the schedule in real-time 
would require an optimisation which can take place within a few seconds, 
whereas planning for the next-day schedule of meeting building demand 
requirements could take several minutes. When planning a development, 
understanding the relevant technologies that should be installed requires that 
feasible schedules are known. Here, schedule optimisation would be part of a 

 
MILP 

simple linear 

MILP piecewise 

linear 
eDE 

eDE 

(ΔTcw) 

Solution time 0.08s 1.64s 276s 295s 



wider optimisation which includes initial technology purchase and a multi-
year outlook and is the least time critical, within reason. In these planning 
cases operation costs are compared to capital cost of technologies, as such the 
introduction of ΔTcw, which cannot be utilised in the MILP environment, may 
become pertinent. However, technologies may need more realistic 
representation in time-constrained circumstances. Knowing that a battery must 
meet e.g. 30kW or 32kW at a given instant is more important five minutes 
before the instant than it is during the design phase. This shows a particular 
mismatch between different requirements, as it is not possible to realise the 
most accurate technology representation whilst also maintaining a very low 
time to solution. 

We have operation schedules can differ without compromising on 
objective function (figure 3). Here, there is the possibility for an operator to 
apply qualitative requirements, or additional quantitative constraints, in order 
to choose the preferred schedule. As a metaheuristic method, eDE supplies an 
array of solutions within range of the objective function, so an operator could 
choose a schedule based on personal preferences (e.g. minimising technology 
cycling). MILP provides a single optimum, but the speed at which it reaches 
a solution could allow an operator to add or adapt constraints to create a range 
of viable scenarios, where weighting on scenario preference will be based on 
objective function result and subjective preference. The exact method 
employed will, again, depend on the situation, as availability of variable 
qualitative/quantitative constraints will differ. 

9. Conclusions 

This paper has compared two popular modelling methods found in the 
field of energy system modelling: metaheuristics and MILP. By applying 
linearisation to technology characteristic curves when necessary, the optimal 
operation schedule of a HVAC system can be found by both a metaheuristic 
and MILP method. The objective function, to minimise the operating cost of 
the system over one day, is similar across all methods, although a piecewise 
linear MILP method is more reliable than metaheuristics for locating a global 
optimum. Operation schedules given by each method provides small 
differences that can be exploited by an operator to apply a degree of 
subjectivity without compromising objective function optimality. However, 
solution time is larger in the metaheuristic model, by four orders of magnitude 
compared to a simple linear MILP method. This discrepancy means that for 
any real time system control, it is unlikely that a complex, realistic 
representation of technologies is possible. In optimising operation schedules, 
individuals must decide on criteria such as realistic technology representation, 
speed, data pre-processing requirements (such as piecewise linearisation), and 
availability of quantitative/qualitative data before developing a model in an 
optimisation environment. This paper has gone some way to comparing those 
criteria.  
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