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HIGHLIGHTS

We reveal trade-offs like where to

site wind farms, hidden in

conventional methods

PV is a must-have in all examined

systems, often complemented by

batteries

Replacing firm capacity is costly,

requiring large renewable and

storage capacities

Carbon-neutral gas turbines

contribute to balancing but

minorly compared with today
We develop a computational method, which shows that there is a flexibility of

choice to manage contested decisions arising when planning highly renewable

power systems, such as where to locate wind capacity. Within this decision space,

problematic technologies, such as bioenergy, are difficult and costly to replace

and are not absolute must-haves. Expansion of PV is a must-have, coupled with

battery when designed to cope with low-wind conditions. Carbon-neutral gas

turbines can contribute to balancing but with a minor role compared with today’s

use.
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Practically Optimal Alternatives

Francesco Lombardi,1,3,* Bryn Pickering,2 Emanuela Colombo,1 and Stefan Pfenninger2

SUMMARY

Designing highly renewable power systems involves a number of
contested decisions, such as where to locate generation and trans-
mission capacity. Yet, it is common to use a single result from a
cost-minimizing energy system model to inform planning. This ne-
glects many more alternative results, which might, for example,
avoid problematic concentrations of technology capacity in any
one region. To explore such alternatives, we develop a method to
generate spatially explicit, practically optimal results (SPORES).
Applying SPORES to Italy, we find that only photovoltaic and stor-
age technologies are vital components for decarbonizing the power
system by 2050; other decisions, such as locating wind power, allow
flexibility of choice. Most alternative configurations are insensitive
to cost and demand uncertainty, while dealing with adverse weather
requires excess renewable generation and storage capacities. For
policymakers, the approach can provide spatially detailed power
system transformation options that enable decisions that are so-
cially and politically acceptable.

INTRODUCTION

Transitioning to decarbonized electricity supply is urgent,1 and increasingly, the

large-scale deployment of wind and solar power are seen as the key to this

transition.2,3 Policy and planning decisions toward that goal are not straightforward,

given the many possible technological options and the different social and political

barriers they face.4,5 Energy system optimization models can inform decisions by

identifying system configurations to reach a target such as zero emissions with min-

imum cost.6,7 However, cost optimality alone ignores the social and environmental

dimensions that are more important for real-world political feasibility8,9 and that

models have difficulties depicting.10 Indeed, many stakeholders with differing

influence andmotivations are involved in energy planning, often including local com-

munities when it comes to renewable capacity deployment decisions.11 Although

linearized methods to consider multiple objectives do exist, it is virtually impossible

to parametrize the indefinite number of stakeholder objectives into a single multi-

objective optimization problem.12 Further, these techniques fail to acknowledge

the limitation of looking for a single optimal configuration.8 Focusing on a single,

optimal solutionmeans that a rangeof equally feasible but perhaps radically different

systemconfigurations remain hidden fromview.4 Explicitlymodelling and comparing

these alternatives lets energy modellers more effectively support decision making.12

Methods to generate near-optimal alternative solutions have been applied in energy

system optimization models13,14 in both country-wide15,16 and continental17,18

Context & Scale

The planning of highly renewable

power systems at any scale

involves compromise across

diverse stakeholders. We develop

a method that generates a variety

of spatially explicit, alternative

system configurations that can be

used to balance techno-economic

feasibility with social and political

goals.

The application of our method to

Italy reveals flexibility of choice for

decisions like where to locate

wind power and whether to invest

in particular technologies.

Technology substitution and

complementarity is evident: solar

photovoltaic and battery

capacities expand together, as do

wind and synthetic gas turbine

capacities, all of which must

notably increase to replace

bioenergy’s firm capacity. We also

see that highly renewable systems

rely on regional interconnectivity

but that gas infrastructure is only

useful at a fraction of current

capacity. Our approach can be

similarly applied to examine

trade-offs in other national

systems, as well as those at district

and continental scales.
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studies. These past studies have focused on identifying ‘‘must-have’’ technologies,

such as electricity storage, that are always or frequently chosen by the model across

many near-optimal solutions.18 However, all of these studies modelled entire coun-

tries as single regions with average renewable generation potentials for a single

weather year. Yet, for the renewable transition, an entirely new set of relevant ques-

tions is of critical importance, such as: the variability of renewable generation as a

function of the siting of wind and solar capacity;3 the interdependency of such siting

and of the resulting distance from point of consumption with transmission capacity

expansion plans19,20; and the effects of technology deployment, both renewable

generation and transmission, on landscape protection, land use conflicts, and social

acceptance of infrastructure.21 These questions all play out on a more local scale11

and thus require modelling with spatial detail.

Here, we introduce a method to address these shortcomings, to generate spatially

explicit practically optimal results (SPORES). To do so, we expand the algorithm

for the generation of near-optimal solutions from DeCarolis12 to generate solutions

that differ in their spatial configuration of technology deployment. We modify the

model’s objective function to minimize the appearance of location-technology com-

binations already explored in previous solutions, assigning weights to these pre-

explored combinations proportional to their utilization of available expansion

potential (see Experimental Procedures). Using our approach, we investigate poten-

tial configurations for the full decarbonization of the Italian energy system by 2050.

Currently without an energy system plan beyond 2030, Italy is in need of planning in

the context of a fully decarbonized Europe. The country also exhibits spatial varia-

tion in demand, resource availability, and legislative power, allowing us to demon-

strate the scientific use of the SPORES approach while providing timely policy

insights. We model Italy using 20 regions corresponding to the political units that

hold legislative power on local renewable energy regulation, further grouped into

the 6 electricity market bidding zones. In doing so, we harmonize the spatial context

of our model with real decision structures. Themodel is solved using hourly data for a

specific weather year in the range 1981–2016, determining the capacity and location

of electricity generation, storage, and transmission technologies to deploy. The

model is implemented in the open-source Calliope framework22 which we extend

with a general implementation of the SPORES approach. As a basis for comparison,

we first start with a discussion of model results from the cost-minimizing optimal

solution.

RESULTS

Cost Optimality Makes Implicit Trade-Offs on Critical Real-World Decision

Variables

Decisions on technology mix happen along three dimensions: the specific technol-

ogies to deploy, the location of their installed capacity, and the extent to which that

capacity is used in operating the system. As shown in Figure 1, the cost-optimal

configuration from the first, conventional run of the model (see Experimental Pro-

cedures) indicates a major PV capacity expansion (+144.5 GW), followed by onshore

and offshore wind (+59.6 and +17.6 GW, respectively). Non-negligible investments

in electrolysis (7.0 GWH2) and methanation with direct air capture (5.6 GWCH4) allow

for the injection and long-term storage of carbon-neutral, synthetic methane in the

existing gas infrastructure. This allows 11.7 GW of existing combined-cycle gas tur-

bines to be kept in operation. All of the limited expansion potential for international

connections, pumped hydro, and biomass plants is fully utilized, whereas inter-zone

connections are substantially but not fully reinforced. Utility-scale batteries are

mainly installed in the bidding zone NORD (for zone definitions, see Figure S11),
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Figure 1. Cost-Optimal Model Results Compared with Capacity Expansion Potentials

Capacity expansion potentials, or potential capacity, represent the maximum theoretically possible expansion for the capacity of a technology in a

specific region or bidding zone. The methodology adopted to compute such values is reported in detail in the Experimental Procedures.

(A) Cost-optimal and potential PV and wind capacity in each political region.

(B) Cost-optimal utilization of available potential transmission line capacity expansion between national bidding zones and to neighboring countries.

(C and D) Nationally aggregated cost-optimal and potential capacity, for all modeled electricity generation and storage technologies, split into smaller

scale (C) and larger scale (D) technologies. Storage technology capacity refers to charge/discharge capacity, not stored energy capacity. Electrolysis

and methanation capacity are expressed in GW relative to the output product (hydrogen and methane, respectively). The potential expansion capacity

of all biofuel, hydro, and geothermal technologies is fully utilized, as well as all international transmission. There is such a large scope to increase

electrolysis, methanation, and gas turbine capacity that, for clarity, we do not visualize the exact limit (reported in Supplemental Experimental

Procedures). The same occurs for battery, PV, and wind capacity, but most of the optimal capacity expansion takes place in specific regions, some of

which are fully utilized, leaving others with little to no deployed capacity. For bidding zone and region definitions, see Supplemental Experimental

Procedures.
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which has the highest peak demand. The cost-optimal configuration for 2050 would

require, starting from the 2015 reference year, average annual renewable deploy-

ment rates of + 4.1 and +2.2 GW for PV and wind, respectively. This is comparable

to annual expansion in the period 2008–2016. Driven by strong political support, PV

expansion in this time period averaged +2.4 GW/year, peaking at +9.5 GW in 2010,

whereas wind expansion averaged +0.7 GW/year, peaking at +1.4 GW in 2009.23

Transmission line expansion would similarly be in line with current national plans.

The grid operator expects to reach the international transmission expansion sug-

gested by the cost-optimal solution by 2030.24 Italian inter-zone transmission expan-

sion is equivalent to +0.44 GW/year, slightly higher than the +0.29 GW/year fore-

seen in current plans.24

Although capacities and deployment rates in the cost-optimal result are thus

feasible, four features of the optimal solution stand out as highly relevant and

potentially problematic for policy makers. These features represent implicit

trade-offs made in the cost-optimal solution, which may be undesirable or warrant

modification. First, there is an uneven distribution of wind and solar generation ca-

pacity across the country. A small number of regions would need to sustain

unprecedented shares of the national deployment rate. This is particularly prob-

lematic for wind farms, increasingly encountering local opposition worldwide.25,26

For example, Sardinia would go from containing 11.0% to 19.5% of Italian wind

generation capacity, while comprising only 2.7% of its population. From a tech-

nical perspective, such concentration of capacity also entails increased need for

transmission to points of consumption located further away, with system reliability

risks in case of line congestion or damage, compared with a more distributed

configuration.27

Second, large transmission capacity expansion leads to underutilized connections.

The SICI-SUD connection would only have a 26% average hourly capacity factor.

Such low utilisation28,29 may be cost-optimal on a national level but may make justi-

fying the investment more difficult from a local perspective, given the high land-

scape impact in proportion to the low utilization. In addition, the line is mostly

used unidirectionally to transfer local excess generation in SICI to the neighboring

SUD region, which may further lead to local opposition through a perception of un-

evenly shared benefits. A low-capacity factor can thus be seen as a proxy for poten-

tial broader social barriers.30 Third, system design is based on a specific weather

year, which does not cover the full range of climatological conditions, such as partic-

ularly windless days. Additional renewable generation and storage capacity may

mitigate the effect of overfitting renewable generation to a single weather year,

on the condition that firm, dispatchable capacity remains fixed. Despite leading to

greater curtailment in typical weather conditions, this ‘‘overcapacity’’ could be bene-

ficial in adverse weather years.

Fourth and finally, there is deployment of technologies against which public oppo-

sition may arise, are technically unproven, or which may have undesired trade-offs.

These technologies include bioenergy, which competes with other land uses, and,

which may have unacceptably high lifecycle emissions;31 batteries, the large-scale

integration of which into power systems has not yet taken place; methanation with

direct air capture, which has so far only been demonstrated at the pilot scale;32

and offshore wind, which currently lacks political support in Italy, similarly to other

international contexts.33–35 Using our approach, we will investigate alternative but

equally feasible solutions, generating a decision space to help navigate around

the possibly problematic features highlighted above. While we apply the method
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to the Italian case, the problems outlined above exist across most industrialized

countries,31,34,36 and our approach to dealing with them are equally applicable

elsewhere.

Must-Haves and Real Choices

Given that some features of the model results may be undesirable or impractical, for

reasons exogenous to the model configuration, we want to investigate whether

there are key features that hold across a range of model solutions (must-haves),

where one deployment choice could be substituted with another (real choices),

and what trade-offs such substitutions would entail. To do so, we generate SPORES.

These SPORES are feasible solutions that are maximally different from the cost-

optimal solution while total system cost remains within 5%, 10%, or 20% of the

cost-optimal case. 178 SPORES are generated in each scenario; see Experimental

Procedures for a detailed description of the method.

Figure 2 shows the frequency distribution of the extent to which potential expansion

capacity is utilized by each technology, across a set of SPORES in each cost relaxa-

tion scenario. For a 10% cost relaxation, most technological options do not appear

consistently across all alternative configurations, with the exception of PV and inter-

national transmission. In particular, PV has a narrow distribution that peaks around

45% capacity utilization and never falls below 15%. Moreover, while the expansion

of international transmission can be completely avoided if accepting a larger

(20%) cost relaxation compared to the cost-optimal case, PV can never be entirely

disregarded. If the accepted cost relaxation is instead limited to 5%, technologies,

such as inter-zonal transmission, onshore wind, pumped hydro storage, and bio-

energy, are present to some extent in all configurations. All other technologies

can be entirely substituted by functionally equivalent alternatives in at least one

configuration, irrespective of the accepted cost relaxation. These technologies (po-

wer-to-gas, batteries, and offshore wind) therefore represent the real choices. Inter-

national and inter-zonal transmission, onshore wind, pumped hydro storage, and

bioenergy are costly to replace but not absolute must-haves. Only PV remains as

an absolute must-have technology, which places it in a position of key importance

in Italy’s energy transition.

Although firm capacity options, such as bioenergy, can be reduced, this always en-

tails significantly larger increases in capacity elsewhere. For instance, assuming a

10% cost relaxation, avoiding 4 GW of additional bioenergy capacity requires 36

to 45 GW additional renewable capacity and approximately 6 GW of additional stor-

age capacity. This trade-off and the importance of firm capacity has also been shown

to exist in the US.19 In our case, if firm capacity is predominantly based on harvested

biomass, the land use implications of replacing bioenergy with renewables are not

clear. Power-to-gas options are an alternative for firm capacity. However, because

they are coupled to renewable generation through electrolysis, they can help to sub-

stitute bioenergy only when the cost relaxation permits a large deployment of excess

renewable capacity (see Figure 2C). PV with battery storage thus remains the most

cost-effective alternative to firm capacity.

Figure 3 shows that the available decision space is limited by the choice of technol-

ogy and where those technologies are sited (see also Figure S1). We can see that the

deployment of wind capacity in southern and islanded zones, far from the largest

point of consumption (NORD), requires increased transmission capacity on all lines

leading to the NORD bidding zone. This trend is less marked for PV capacity deploy-

ment, since there is a high tendency for PV deployment to be coupled with battery
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storage, which favors intra-day, local consumption. Indeed, the synergy between

daily PV fluctuations and short-term battery storage frequently reduces the need

for gas turbine capacity for intra-day balancing. Gas turbine capacity correlates

instead with wind capacity, without the need for geographic proximity. This high-

lights two competing strategies: one more oriented toward local consumption,

based on PV and batteries, and another more oriented toward consumption far

from production, based on wind turbines and a combination of increased transmis-

sion expansion and power-to-gas deployment. When a higher investment margin is

made available, such as with a 20% cost relaxation, the coexistence of multiple stra-

tegies becomes possible, and competition effects weaken overall, possibly reducing

the risks associated with the reliance on a single strategy—such as one grounded on

long-distance transmission.

We have seen that bioenergy is structurally hard to replace. However, such behavior

changes for bidding zones located between several other zones, and hence heavily

interconnected, such as CNOR. These zones can take advantage of multiple, diver-

sified weather patterns to displace bioenergy via a combination of (1) local or nearby

PV and gas turbine capacity (with gas turbines emerging particularly for cost relaxa-

tions larger than 5%) and (2) wind farms located further away and connected via

transmission lines and gas pipelines. This buffering role could be similarly played
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Figure 2. FrequencyDistribution of Capacity Expansion Potential Utilization across theWhole Set of SPORES (178 for Each Box), for Each Technology

Option and for Different Cost Relaxations

Utilization is defined as the deployed technology capacity relative to the maximum potential capacity across the entire model region. Zero utilization

only occurs in specific SPORES in which we explicitly minimize utilization of a technology (see Experimental Procedures). Technologies with no

occurrences of zero utilization (PV, international transmission) are those that can never entirely be avoided, not even when explicitly minimized and

hence represent a must have. Gas turbine capacity is used to represent the full power-to-gas technology chain (comprising electrolysis, methanation

with direct air capture, and gas turbines), since it is the rate limiter for electricity production from synthetic methane. The frequency distribution is shown

by a strip (categorical scatter) plot in red, with the kernel density estimation of the underlying distribution in gray underneath. The vertical spread in the

strip plot points (i.e., the ‘‘jitter’’) improves legibility but has no statistical interpretation. The frequency distribution is statistically equivalent to a

sample, not a full dataset, since the generated alternatives represent only a subset—namely the subset of maximally different alternatives—of all

possible feasible configurations. Colored diamonds highlight particular cases in which bioenergy (as a key provide of firm capacity) is minimized,

leading to proportionally larger increments of renewables and storage capacity, as further discussed in the main text.
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by central zones in other geographic contexts. For example, capitalizing on the anti-

correlation of wind patterns across Europe requires balancing wind turbine genera-

tion across the continent’s north-south divide.37 Based on this initial examination of

the range of choice that exists across all solutions, we move on to defining more

formal criteria to select solutions of interest.
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Figure 3. Correlation of Technology Capacity Utilization across all 178 SPORES for the Reference 10% Cost Relaxation

The same figure is repeated for cost relaxations of 5% and 20% as Figure S1. A high correlation coefficient, either positive (e.g., between battery storage

and PV in SICI) or negative (e.g., between onshore and offshore wind in SICI and SUD), indicates a strong coupling between capacity deployment of two

technologies across the entire SPORES set. A positive coupling indicates that both technologies are deployed together, whereas a negative coupling

indicates that one technology is deployed at the expense of the other. There are many instances in which correlation is either low or zero, indicating no

coupling between deployment patterns. Correlation is calculated using the Spearman correlation function; self-correlation, which is always 1, is not

shown. Some technologies in the figure represent groups of model technologies: ‘‘PV’’ covers rooftop and open-field PV; ‘‘transmission’’ covers inter-

zonal and international transmission; ‘‘storage’’ covers pumped hydro and battery, but not gas storage, since it is equally available across all SPORES as

part of the existing infrastructure, provided that power-to-gas technologies are installed. ‘‘Gas turbines’’ shows the dispatchable capacity of the whole

power-to-gas supply chain. Some technologies such as waste-to-energy are not included, as they have no expansion potential.
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Alternatives with Spatial and Technological Diversity

We now examine three of the problematic features we identified in the optimal so-

lution: the concentration of wind farm deployment in specific regions, the low-ca-

pacity factor of expanded transmission lines, and the overfitting of renewable

generation and storage capacity to a specific set of weather conditions, quantified

by the presence or absence of overcapacity compared to the cost-optimal solution.

We compare all SPORES on key metrics associated with each feature (Table 1). We

find that only a subset of SPORES both reduce the concentration of wind deploy-

ment and avoid transmission lines with capacity factors below 30% (Table S1). Ta-

ble 1 compares the three key metrics for those SPORES with the greatest improve-

ment relative to the cost-optimal solution on each metric, across cost relaxations.

Depending on our choice of SPORE and on the cost relaxation, we see that it is

possible to invest in overcapacity in the range 6.4–48.5 GW, reduce the spatial con-

centration of wind deployment by 40%–48%, or increase the minimum capacity fac-

tor across all inter-zonal transmission lines by 30%–127%. As expected, variations in

the accepted cost relaxation affect the extent to which excess capacity can be

installed, but improvements on other metrics are still possible.

Table 1. Best-Ranking SPORES

Accepted
Cost
Relaxation

SPORE Name and
Number

Overcapacity
(GW)

Maximum Wind
Capacity Share in a
Region (%)

Minimum Inter-
zonal Transmission
Capacity Factor (%)

20% high overcapacity
(100)

48.5a 13.9 46.1

low wind
concentration (23)

�21.6 11.4a 46.1

high transmission
use (101)

10.4 15.1 59.3a

10% high overcapacity
(59)

32.1a 13.2 33.2

low wind
concentration (101)

11.5 12.1a 35.9

high transmission
use (24)

�9.6 13.4 42.4a

5% high overcapacity/
low wind
concentration (62)

6.4a 10.2a 31.6

high transmission
use (9)

0 14.3 33.9a

cost-optimal
solution

0 19.5 26.1

Best-ranking SPORES within the subset of 54, 22, and 11 SPORES (for, respectively, 20%, 10%, and 5%

accepted cost relaxations) with a regional concentration of wind deployment lower than the cost-optimal

solution and transmission line capacity factors no lower than 30%. For a 10% cost relaxation, SPORE 59

features the highest overcapacity (estimated by renewable and storage discharge capacity in excess

compared to cost optimal, for the same firm capacity). Discharge capacity is given as the maximum

rate at which electricity can be dispatched by direct electrical storage (pumped hydro and batteries) or

synthetic methane gas turbines (supplied via electrolysis and methanation). SPORE 101 has the lowest

maximumwind capacity share in any one region, whereas SPORE 24 has the highest minimum inter-zonal

transmission capacity factor. For the case of a 5% cost relaxation, the ‘‘high-overcapacity’’ SPORE is simul-

taneously the highest-ranking for ‘‘low wind concentration.’’ Notably, throughout all cost relaxation

values, although each of these three SPORES were selected for their performance on one metric, they

all outperform the cost-optimal solution in terms of wind capacity concentration and transmission line uti-

lization, while overcapacity shows a nonlinear trend.‘
aHighest scoring solution on each metric.
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Figure 4 gives an overview of the model results for the high overcapacity and low

wind concentration SPORES from Table 1 (for the reference 10% cost relaxation),

compared with the cost-optimal solution. In the cost-optimal result, 19.5% of the to-

tal national onshore wind deployment was in the Sardinia region; this decreases to

9.1% in the low wind concentration SPORE; the share at which it already is today.

In this configuration, overall, the highest share for a single region is 12.1%. Part of

this comes from using 86% more offshore wind capacity than in the optimal result

and from deploying more total wind capacity (Figure 4B). This configuration also re-

quires less than one-third of the overall transmission line expansion that the cost-

optimal solution needs, which is an additional benefit of spreading capacity more

evenly across the country. Similarly, electrolysis and methanation capacity are less

concentrated, reducing the risk of hydrogen production fluctuating due to the

weather pattern of a specific region. Domestic hydrogen production also increases

by 56% without an increase in demand for synthetic methane, leading to additional

available hydrogen for sectors other than power-to-gas.

It is not strictly necessary to depend on additional offshore capacity to avoid large

wind deployment in specific regions. The highest overcapacity SPORE (Figure 4C)

shows a configuration with a similarly low maximum wind capacity share, caused

by entirely avoided offshore wind deployment (�100%) in favor of additional

onshore wind capacity (+24%). This SPORE has higher PV (+18%) and battery

(+85%) capacity expansion, counterbalanced by low transmission line capacity

expansion (�55%) and slightly higher, but more evenly distributed, methanation ca-

pacity. Despite increased storage capacity, such a high overall variable renewable

capacity does lead to a non-negligible increase in curtailment (+8%), i.e., peak pro-

duction exceeding demand, in the reference weather conditions. Curtailment may

be seen as a problem, since it is lost revenue from the perspective of the operators,

but it also signifies overcapacity. Under unfavorable weather conditions, the combi-

nation of such overcapacity with a large storage capacity may contribute to

providing the required redundancy for stable system operation (see also Sensitivity

to Cost Projections, Weather, and Demand), given that firm capacity does not

reduce below that given in the cost-optimal solution.

Alternatives to Potentially Problematic Technologies

To entirely avoid unmodeled risks associated with certain potentially problematic

technologies, we ensure that the overall SPORES set includes several system config-

urations that reduce or entirely eliminate the need for their capacity expansion

(see Experimental Procedures). In particular, additional offshore wind power plants,

utility-scale batteries, and power-to-gas technologies can be entirely excluded from

the system configuration for any cost relaxation in the range 5%–20%, while bio-

energy can be fully avoided for cost relaxations larger than 5%, or otherwise

restrained to a marginal increase of only 1 GW. For the reference 10% cost relaxa-

tion, Figure 5 shows the effect of minimizing potentially problematic technologies

on PV, wind, power-to-gas, and transmission capacity expansion. It plots the capac-

ity utilization of these technologies against their respective maximum concentration

Figure 4. Spatial and Technological Configuration of Three Alternative Results

(A–C) (A) The cost-optimal configuration, (B) the SPORE with the lowest concentration of wind capacity deployed in any one region, and (C) the SPORE

with the highest overcapacity. In each case, we show region-specific total annual PV and wind production (left); electricity flows across transmission lines

connecting zones and the required renewable generation curtailment in those zones (center-left); hydrogen and carbon-neutral methane production in

each zone and the associated methane flows across existing pipelines or maritime transport pathways (center-right); and nationally aggregated

installed technology capacity, including both existing and new plants (right). At the bottom of each column are the legend and scale. Methanation and

electrolysis information is given in units of the output product (synthetic methane and hydrogen, respectively).

ll

10 Joule 4, 1–23, October 14, 2020

Please cite this article in press as: Lombardi et al., Policy Decision Support for Renewables Deployment through Spatially Explicit Practically
Optimal Alternatives, Joule (2020), https://doi.org/10.1016/j.joule.2020.08.002

Article



in any specific region (Figures 5A, 5B, and 5D) and for transmission, against the min-

imum capacity factor for a single transmission line (Figure 5C).

Dynamics of coupled capacity previously seen in Figures 2 and 3 are made more

evident when minimizing specific technology deployment. For instance, eliminating

battery capacity requires a reduction in PV deployment, and zero power-to-gas

infrastructure decreases the possible deployment of wind. Hence, as we have

already seen, some dispatchable technologies are better suited to the generation

profiles of non-dispatchable technologies. Indeed, zero battery capacity actually

leads to an increase in wind power deployment; wind power is balanced instead

by the longer-term storage provided by power-to-gas infrastructure. Overall, a

decrease in any one dispatchable problematic technology requires an increase in

the capacity of others: minimizing battery capacity requires a notable increase in po-

wer-to-gas infrastructure. As previously highlighted in Must-Haves and Real

Choices, the minimization of bioenergy, the sole firm capacity option in our model

with margin for capacity expansion, requires proportionally larger deployment of

all other technologies. Finally, the minimization of any potentially problematic tech-

nology leads to increased use of transmission lines, which are relatively
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Figure 5. Impact of Minimizing the Deployment of Potentially Problematic Technologies

(A–D) On the deployment of PV (A), wind (B), transmission (C), and power-to-gas (D) technologies. All 178

SPORES are plotted on each panel; colored SPORES are those for which the deployment of a potentially

problematic technology is explicitly minimized. Panels compare the maximum share of a technology in

any one region or the minimum capacity factor for a single line for transmission (y axis) against the total

utilized potential expansion capacity (x axis). Gas turbine capacity is used to represent the full power-to-

gas technology chain (comprising electrolysis, methanation with direct air capture, and gas turbines),

since it is the rate limiter for electricity production from synthetic gases. However, since gas turbine

capacity is calculated at the bidding zone level, methanation plant capacity is used to compute regional

concentration. The cost-optimal solution and the ‘‘low wind concentration’’ SPORE (Table 1) are

highlighted with additional markers. The ‘‘low wind concentration’’ SPORE, chosen as a representative

example, features one-third the overall transmission capacity expansion compared with the cost-optimal

case, and a reduced deployment of power-to-gas, but at the expense of an increased deployment of

batteries and offshore wind.
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underutilized. Similar patterns, though more or less marked depending on the avail-

able margin, hold for different accepted cost relaxations (Figure S2). It is clear that

trade-offs between different potentially problematic technologies emerge: to elim-

inate one, we must rely more on another.

When considering only the SPORES with high transmission utilization and low wind

concentration, bioenergy and battery capacity deployment cannot be avoided

under a 10% cost relaxation (Table 2). If the cost relaxation is limited to 5%, all prob-

lematic technologies are components of these SPORES. Accepting a 20% cost relax-

ation, however, allows us to find SPORES that eliminate all problematic technologies

while keeping wind farm regional concentration low and transmission line use high.

All these problematic technologies can therefore be added to a ‘‘costly to replace’’

category. Cost relaxation can be interpreted as the willingness to pay: when it is high

enough, these technologies can still be avoided. Presenting the trade-offs allows de-

cision-makers to make explicit decisions on them. For example, some may find mini-

mizing imported or harvested bioenergy crop more important than preventing

economically inefficient underutilization use of transmission lines.

Sensitivity to Cost Projections, Weather, and Demand

The SPORES we have considered so far were generated with a cost relaxation in the

range 5%–20% from the cost-optimal solution, for a reference set of technology cost

projections and a single reference year for demand and weather. Here, we investi-

gate the sensitivity of results to cost projections (separated into power-to-gas and

renewables/battery costs), as well as to future demand and weather year (see Exper-

imental Procedures for details).

The SPORES are relatively insensitive to technology costs, particularly to those of

power-to-gas (Figures 6, S7B, S7C, S8B, and S8C). This indicates that the role of po-

wer-to-gas infrastructure is somewhat fixed, despite the high uncertainty in the cost

of utility-scale electrolysis and methanation plants resulting from their early stage

of commercialization. The sensitivity to renewable and battery costs is also compar-

atively low, but there is some movement of the SPORES cluster to higher renewable

capacity utilization when renewable and battery costs are low (Figures 6, S7D, and

S8D). Lower renewable and battery costs also lead to bioenergy becoming avoid-

able even with a 5% cost relaxation (Table S2), since the large increase in renewable

capacity required to displace bioenergy is now affordable.

Sensitivity to future demand is somewhat greater than that to cost fluctuations (Fig-

ures 6, S7F, S7G, S8F, and S8G). The SPORES under demand sensitivity move in a

Table 2. Capacity Expansion Potential Utilization of Problematic Technologies

Capacity Expansion Potential Utilization (%)

Subsets with High Transmission
Use and Low Wind Concentration
for Different Cost Relaxations

Bioenergy Offshore
Wind

Batteries Power-to-Gas
(Turbines)

20% cost relaxation 0–100 0–95.0 0–39.7 0–64.7

10% cost relaxation 100 0–63.3 22.0–
36.5

0–17.9

5% cost relaxation 100 35.0–44.7 21.1–
22.3

18.0–20.9

For subsets of SPORES that meet the criteria of high transmission use and low wind concentration (as

defined in Table 1). The potential utilization within the subset is given as a range, for increasing accepted

cost relaxations.
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Figure 6. Solutions Found across Sensitivity Scenarios

Here, focusing on the reference 10% cost relaxation, we represent the reference set of SPORES (A) in terms of renewable capacity potential utilization

(y axis), transmission potential utilization (x axis), and direct electricity storage capacity potential utilization (color). Further panels show how the set of

SPORES reacts, in terms of these indicators, to changes in the cost projections related to power-to-gas (B and C) or renewables and battery (D and E)
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similar, if not more exaggerated direction to that seen when changing renewables

and battery costs. Lower demand leads to lower overall storage utilization (and simi-

larly low power-to-gas deployment, see Figure S3). Higher demand calls for a visibly

stronger reliance on both renewables and storage capacity deployment. Yet,

although the cost-optimal solution expects a 5% increase in total renewables capac-

ity under high demand, SPORES still exist with renewables deployment on the scale

of the reference scenario cost-optimal solution (�40% total renewables capacity

utilization).

Weather year choice has the strongest effect on the entire SPORES set, strongly and

visibly shifting all results, particularly along the renewable capacity and storage ca-

pacity utilization axes (Figures 6, S7H, S7I, S8H, and S8I). These are the same fea-

tures sought by the ‘‘high overcapacity’’ configuration; we see an overlap in system

configurations between the reference and bad weather scenarios, as long as cost

relaxation is greater than 5% (Figures 6I, S7I, and S8I). For a system to be able to

deal with adverse weather conditions, additional renewable and battery capacity

is essential—with a preference for configurations relying more on local PV over

long-distance wind production. The additional capacity of renewables is tightly

coupled to electrical storage, with power-to-gas capacity, actually reducing across

all SPORES in the low-wind, worst weather year case (Figure S3).

We see in Figure 6 that there is a degree of overlap in the renewable and transmis-

sion capacity utilization between the reference scenario and the sensitivity scenarios.

This overlap increases with cost relaxation (Figures S7 and S8); an increased willing-

ness to pay increases the likelihood of choosing a system configuration, which is

valid on different realizations of uncertain parameters. Otherwise, the choice of

cost relaxation does not qualitatively change the aforementioned results (Figures

S4–S8). The previously studied low wind concentration SPORE (see Table 1) is

among those with similarities to some sensitivity scenario SPORES. They are charac-

terized by similar spatial and technological capacity expansion strategies, only with

slightly different absolute per-region capacities (Figure S9). For a 10% cost relaxa-

tion, the largest oversizing relative to the low wind concentration SPORE from the

reference scenario is up to 21 GW (+28%) of additional PV capacity and +6 GW

(+40%) of additional battery capacity in the NORD bidding zone. This is comple-

mented by a reduction in total wind capacity and no change in firm capacity. All of

these systems are still close to optimal cost; their higher cost compared with the

optimal solution could simply be interpreted as the cost of incorporating uncertainty

in decision making. This is an additional benefit of the SPORES approach: the same

analysis undertaken with only the conventional, cost-optimal solution would suggest

greater sensitivity in many scenarios, failing to communicate the existence of config-

urations that can adapt to unfavorable conditions with only minor changes in the sys-

tem configuration, albeit at a marginally higher system cost.

Figure 6. Continued

technologies; the estimated electricity demand in 2050 (F and G); and the reference weather year (H and I). The reference scenario results (A) are

repeated, for comparison, in (B–G) as lightly gray outlined circles. ‘‘low’’ and ‘‘high’’ cost scenarios for power-to-gas (electrolysis, methanation with

direct air capture) and renewables and batteries refer to, respectively, more or less optimistic cost projections for all of the technologies comprised in

each group. ‘‘Low demand’’ refers to a lower projected 2050 demand to that used in the reference scenario, while ‘‘high demand’’ refers to a greater

projected 2050 demand. The reference weather year is 2007, the best weather year is 2010, and the worst weather year is 1989. For details on the

definition of cost projection ranges, generation of demand scenarios, and selection of weather years, see Experimental Procedures. The ‘‘high-

overcapacity’’ SPORE identified for the reference scenario is marked in (I) for comparison with the set of SPORES generated for unfavorable weather

conditions. The same figure is repeated as Figure S3, substituting color coding for electricity storage with power-to-gas capacity potential utilization,

showing how the former is complementary to the latter: all SPORES minimizing battery are characterized by higher-than-average power-to-gas

deployment, and vice versa, with the exception of the low-demand scenario, which features low deployment of both. The figure is also repeated for 20%

and 5% cost (Figures S7 and S8) showing that similar trends hold.
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DISCUSSION

We have argued that by relying on a cost-optimal energy system configuration, a

range of implicit trade-offs are made leading the solution to suffer from problematic

features: spatially unbalanced distribution of infrastructure deployment; an overfit-

ting of variable renewable generation and storage capacity to a specific weather

year; high transmission expansion, resulting in low and economically unattractive

utilization of transmission lines; and reliance on potentially problematic technolo-

gies. All of these are issues not just for the Italian case we examine here but generally

for cost-optimal model results across Europe and globally.31,34,36 We demonstrate

that the SPORES approach is able to address these issues by generating and system-

atically analyzing a wide range of spatially explicit, practically optimal model results.

With a marginally increased willingness to pay (5%–20%) above a globally minimized

cost, it is possible for any stakeholder to find system configurations that meet their

otherwise unmodeled objectives.

Using SPORES, it is possible to identify technologies that are must-haves: they are pre-

sent in all generated alternative energy system pathways. It is also possible to identify

those technologies, which are costly to replace; a higher cost relaxation, which can be in-

terpreted as a higher willingness to pay, is required for system configurations without

these technologies. In the contextof Italy, PV is found tobeamust-have,whilebioenergy,

batteries, and international transmissionemergeas the costliest to replace. Furthermore,

it is possible to identify complementary and competitive technologies: local generation

viaPVandbatteryoftencompeteswith long-distancewindgenerationcoupled topower-

to-gas,but the twobecomecomplementary forhigh (up to20%)willingness topay.This is

likely to apply similarly to other sunny countries, but more work is needed to verify

whether such dynamics and potentially problematic technologies are similar elsewhere,

e.g., in windier and less sunny regions. The important general implication is that our

approach can quantify the monetary trade-offs in deciding between such technologies,

allowingdecision-makers tomakeexplicitdecisionson them.For instance, removingbio-

energy from the Italian system requires a 10-fold increase in renewable capacity. This

trade-off between firm capacity and renewables has also been identified in the context

of the US.19 Nevertheless, it would be premature to conclude that highly renewable en-

ergy systems should therefore always include bioenergy. Bioenergy deployment could

facegreater public opposition thanwind turbines,25 require at least two orders ofmagni-

tude more dedicated land use per installed MW38 and where biomass is imported clash

with demands for energy independence.39 Thus, again, a range of trade-offs influence

the degree to which a specific decision-maker may wish to rely on bioenergy. Thus, the

full decision space of feasible energy pathways should be presented. The SPORES

methodexposes this decision space in away that can beusedbydecision-makers tobet-

ter balance engineering criteria with social and political considerations.

Notably, for regions that have many interconnections and can take advantage of

multiple and diverse weather patterns, bioenergy’s firm capacity is often substituted

(even for limited willingness to pay) by a combination of geographically close PV and

gas turbine capacity and wind farms located further away and connected via trans-

mission lines and gas pipelines. This buffering role could be played by topologically

central zones in other geographic contexts. For example, capitalizing on the anticor-

relation of wind patterns across Europe requires balancing wind turbine generation

across the continent’s north-south divide.37

The feasible space of technology deployment is not only restricted to a study of

must-have technologies and technologies that are costly to replace but also to an
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analysis of the capacity ranges. We find that some of Italy’s existing gas turbine ca-

pacity is likely to play a role in a decarbonized energy system. However, their prev-

alence across most SPORES is low, rarely going above about 20%, and never above

60% utilization of today’s capacity. This exposes the technical limits associated with

supporting a high penetration of variable renewables with synthetic fuels and legacy

infrastructure, a finding which is pertinent across Europe, where natural gas still plays

a large role.40 Irrespective of one’s expectations for synthetic fuels, any additional

investment into gas infrastructure to support power generation now seems

misguided.

By undertaking a sensitivity analysis, we show that the limited dependence on po-

wer-to-gas infrastructure is insensitive to technology cost projections. We also

demonstrate that by performing such an analysis across a set of SPORES, rather

than only for a cost-optimal solution, overlaps can be found in which system config-

urations remain valid under different sensitivity scenarios, particularly for increasing

willingness to pay. Indeed, our results seem to suggest that, for systems with limited

potential for the expansion of firm capacity, an overcapacity of renewables and stor-

age, with a preference for local over long-distance generation, may help bridge the

gap with adverse weather years.

Although an expanded understanding of energy system configurations is possible

with the SPORES approach, it has scope for further enhancement. Additional

flexibility mechanisms, such as endogenous demand side management—here,

considered exogenously and only to a limited extent (see Experimental Proced-

ures)—could be investigated in more detail, which may reveal technology mixes

that can partially mitigate the overall necessity of storage. Our current results with

respect to the need for batteries and power-to-gas could be considered a conserva-

tive scenario, in which demand side and sectoral integration flexibility options are

accounted for in the generation of realistic load profiles but without assuming the

possibility of system-wide real-time control and optimization of pools of energy

users by an aggregator. Additionally, our sensitivity analyses show that, although

the cost-optimal solution can be heavily sensitive to variations in uncertain parame-

ters like cost projections, or choice of weather year and future demand, the existing

SPORES approach alludes to feasible deployment patterns which are similar across

all sensitivity sets. Identifying these SPORES could be improved with techniques that

embed input parameter uncertainty into the problem formulation, such as stochastic

optimization. The resulting ‘‘resilient SPORES’’ would consider unmodeled objec-

tives and uncertain parameters simultaneously.

Even in its current state, the SPORES approach creates a rich set of alternatives for

consideration in the policy-making process, enhancing the relevance of energy sys-

temmodels as tools in the transformation to full decarbonization. To help with the ur-

gent task of planning socially and politically acceptable energy system decarboniza-

tion strategies, our implementation of SPORES in the open-source energy systems

modeling framework Calliope makes it accessible to a wide range of potential users.

EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Further information and requests for resources and materials should be directed to

and will be fulfilled by the Lead Contact, Francesco Lombardi (francesco.lombardi@

polimi.it).
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Materials Availability

This study did not generate new unique materials.

Data and Code Availability

All the code and input data required to reproduce this study have been deposited to

https://doi.org/10.5281/zenodo.3903089 and also available at GitHub (https://

github.com/FLomb/Calliope-Italy).

SPORES Approach

The core of the SPORES approach consists of a spatially explicit extension to the

‘‘modeling to generate alternatives’’ (MGA) method12 with the specific goal of be-

ing embedded in an energy system model with high spatial resolution. To do so,

we work with the open-source energy modeling framework Calliope,22 designed to

model systems with high shares of variable renewable generation using high

spatial and temporal resolution. An exhaustive discussion of Calliope’s mathemat-

ical formulation is provided by Pfenninger and Keirstead,41 and the complete code

is available online at https://github.com/calliope-project/calliope. We use Calliope

to build a model of the Italian power system, as described further below in the

Experimental Procedures. The implementation of the SPORES algorithm is freely

and openly available from the Calliope-Italy model repository.42 We now discuss

the algorithm for the computation of SPORES (which is also summarized in

Figure S10).

Finding the Global Optimum

The global optimum of the optimization problem is sought by minimizing the dis-

counted financial system cost, as reported in Equation 1.

min : cost=
X
j

X
i

 
cfix;ijx

cap
ij +

X
t

cvar ;ijx
prod
t;ij

!

s:t: Ax%b

xR0;

(Equation 1)

where i and j indicate the ith technology type and the jth sub-location within the

considered spatial domain; x
cap
ij is the decision variable related to the installed ca-

pacity of the ij-th location-technology combination (hereafter abbreviated as

loc::tech, following Calliope’s nomenclature); x
prod
ij;t is the decision variable related

to the power production of the ij-th loc::tech as a function of time; cfix;ij, cvar,ijare,

respectively, the discounted financial fixed and variable costs per each loc::tech;

A, b are a matrix and a vector of coefficients used to build all the physical constraints

in combination with the vector x of all decision variables.

Assigning Weights

A strictly positive weight ðwn
ij Þ is assigned to those decision variables which assume

non-zero values in the cost-optimal solution, namely loc::techs for which a non-zero

capacity is installed. The scoring on capacity (rather than production) decision vari-

ables allows us to define an ad-hoc scoring logic that assigns a weight to each

loc::tech that is equivalent to the ratio between the installed and the maximum theo-

retically installable capacity. This score is then combined with the weight obtained in

the preceding iteration ðwn�1
ij Þ, for any iteration different from the initial one (Equa-

tion 2). This approach differs from the original MGA formulation, which adopts an

integer weighting logic (+1 for each non-zero decision variable).
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wn
ij = wn�1

ij +
xcap;nij

xcapij;max

(Equation 2)

In fact, in the framework of the 2050 fully renewable horizon of interest, most of the

available loc::techs are expected to experience some investments in capacity

since the initial model run, and to thus have non-zero weights. Accordingly, a

classic weighting scheme based on integer scoring would likely produce very

similar weights across multiple loc::techs, complicating (though not precluding)

the search for maximally different alternatives. On the contrary, assigning the

weight based on the maximum theoretical potential for each loc::tech is expected

to penalize more those locations that are fully utilized in previous iterations, favor-

ing an earlier unlocking of poorly utilized locations. This choice follows that indi-

cated by previous work,16 that the specific needs and purposes of the study and

the related model formulation should guide the identification of a weighting logic

that is most effective in providing meaningful alternatives. In fact, the code imple-

mentation allows the modeler to customize the weighting logic via a dedicated

function.

Generating SPORES

A SPORE is obtained by minimizing the sum of location-specific weighted capacity

decision variables in each loc::tech, while constraining the cost of the current model

run (costn) to remain in the accepted neighborhood of the optimal cost (costt), as re-

ported in Equation 3.

min Y =
X
j

X
i

wijx
cap
ij

s:t: costn%ð1+ sÞ,cost0
Ax%b

xR0;

(Equation 3)

where s is the accepted relaxation or slack. Previous work8 has shown that policy

makers are willing to accept cost increases up to 30%. The benefit of a more

expensive alternative configuration is that a range of results can be produced,

some of which may meet other, unmodeled objectives. Here, we choose a more

conservative slack value of 10% and test sensitivity to larger (20%) or smaller

(5%) values. New weights are computed based on the new configuration obtained

as per Equation 2, and an arbitrary number of SPORES can be generated (50 in this

study).

The formulation in Equation 3 characterizes the problem as an ε-constrained multi-

objective optimization, with minimization of already explored decision variables as

a primary objective and cost as a secondary one. As noted elsewhere,16 this may

complicate the search for configurations which fully exclude pivotal cost-lowering

technological options. Further, the inclusion of the spatial dimension leads to a

multiplication of the possible maximally different system configurations, compared

with existing conventional near-optimal solutions methods, thus, exacerbating the

problem. To overcome this potential bottleneck, we generate a further set of

SPORES that explicitly seek the minimization of capacity for each considered

loc::tech. Up to 3 alternative configurations (a number that is increased to 20 for

the special case of ‘‘potentially problematic technologies,’’ as defined in the

main text) are explored in each case, adopting the formulation reported in

Equation 4.
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min Y2 = a,xcap
ij

+b,
X
j

X
i

wijx
cap
ij

s:t: costn%ð1+ sÞ,cost0
Ax%b

xR0;

(Equation 4)

where x
cap

ij
is the capacity investmentdecisionvariableassociatedwith the loc::techunder

minimization, and a and b are the weights associated to the different components of the

objective function, in this case 10 and 0.1, respectively. The approach produces (for the

model configurationadopted in this study) a total of 178SPORES for eachscenario. In this

study, comprising 27 independent scenarios (considering the different cost relaxations

and the sensitivity analysis),wegenerate a total of 4,806 independent solutions. Thegen-

eration of such a wide range of feasible options represents an unprecedented effort for a

model of high spatial and temporal detail19 and aims at significantly reducing the ‘‘struc-

tural uncertainty’’ of energy modeling, i.e., the gap between what can be modeled and

what is in reality irreducibly uncertain and non-modellable.13 In fact, SPORES avoid the

risk of incorrectly deciding what is of interest to stakeholders, and what is not, rather

providing a full range ofmaximally different feasible spatial configurations of technology

deployment for evaluation (including sensitivity scenarios).

The 20-Region Italian Power System Model

The Italian power sector is organized into six geographical bidding zones: NORD,

CNOR, CSUD, SUD, SARD, and SICI. Bidding zones are used to regulate exchanges

on the electricity market, and inter-zonal connections between them constitute the

core of the national transmission network, as well as the most critical transmission ca-

pacity bottlenecks. The national transmission system operator, Terna, only provides

electricity demand data for these bidding zones, so this is the most feasible scale on

which to model the Italian power system.43,44

However, some of these bidding zones comprise a large number of political regions

(e.g., NORD consists of eight regions), associated with significantly different renew-

able electricity generation potential and different local political conditions, which

might encourage or hinder wind or solar power deployment. Therefore, we propose

a double-scale spatial representation of the Italian power sector, as shown in Fig-

ure S11, in which electricity demand profiles, dispatchable power production/stor-

age plants, and inter-zone transmission lines are characterized at the bidding zone

level, but renewable electricity generation capacity (i.e., rooftop photovoltaic,

farm-scale photovoltaic, onshore wind, and offshore wind) and pumped hydroelec-

tric storage (PHS) are characterized at NUTS2 (i.e., regional) administrative level. The

administrative regions contained within a bidding zone are connected to a central

bidding zone demand node by virtual unconstrained transmission lines.

Electricity Demand in 2050

Significant changes in theelectricitydemandare expected in comingdecades, as a result

of an increasing and substantial electrificationof sectors, such as heat and transport. Esti-

mating the resulting additional electricity demand is difficult since it will depend on the

degree of electrification and on the absolute evolution of national energy consumption

as a function of efficiency improvements and economic growth. To address this, we

rely on the partial-decomposition methodology by Boßman and Staffel,45 implemented

in the open-source demandmodelDESSTinEE. First, it characterizes all energy sectors of

a given country, disaggregated into residential and industrial heat, in addition to several

formsof transport. It does sowith specificdemandprofiles, in somecases resulting froma

weighted average of several real-life relevant behaviors (e.g., smart and conventional
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charging strategies of electric vehicles), subsequently re-aggregating them into a future

electricity demand curve by applying selected degrees of electrification and power-to-X

conversion factors.Theassumptionsused todosocanbearbitrarilymanipulatedorgath-

ered from a set of pre-built scenarios based on outlook by international organizations.

Here, we generate a possible evolution of the aggregated Italian electricity demandpro-

file, based on the pre-built ‘‘GEA-Efficiency’’ (GEA-Eff) scenario, which assumes large de-

grees of electrification of other energy sectors coupled with energy efficiency measures,

andanoverall decarbonizationof theeconomyconsistentwith theParisAgreementgoals

(althoughenergy uses that are not-electrifiedby2050 are left outside the domainof anal-

ysis). We transpose the hour-by-hour relative increase in country-aggregated electricity

demand profiles between DESSTinEE’s 2050 projections and baseline (2010) synthetic

profile onto the actual electricity demand profile gathered from ENTSO-E, for the refer-

ence year 2015, as shown in Figure S12. Finally, we re-allocate the country-aggregated

relative increase in hour-by-hour demand to each bidding zone’s electricity profile, as

based on the Terna zonal demand data, following a proportionality criterion.

Considering the high uncertainty associated with estimating demand, we include

demand in our sensitivity analysis. We consider as an upper bound for sensitivity

the International Energy Agency’s 2� scenario (high demand)—based on similar as-

sumptions to GEA-Eff but with less focus on efficiency measures—and, as a lower

bound, the ‘‘low-growth’’ (low demand) pre-defined DESSTinEE scenario, in which

the demand increase associated with economic expansion is limited. Further details

about load profile variations across scenarios are reported in Figure S13.

Power Generation in 2050

The characterizationof existingpower plants and inter-zoneor international transmission

lines with the required level of spatial disaggregation is realized on the basis of datasets

provided by the Terna46 and ‘‘Gestore dei Servizi Energetici’’ (GSE)23 for the reference

year 2015, as well as building on the data from Lombardi et al.47 for a single-zone Italian

power systemmodel basedonCalliope.Weonly consider technologies that are relevant

for a decarbonized 2050 system, which includes hydroelectric (disaggregated into reser-

voir/basin, run of river, and pumped hydro storage types), geothermal, biomass (solid,

biogas, biofuel, and waste-to-energy) and variable renewable (onshore wind, rooftop

PV, and farm-scale PV) power plants. In addition, we consider the existing large fleet of

combined-cycle gas turbine plants and the gas network infrastructure, which includes

intra- and inter-zone connections and a significant capacity for long-term gas storage,

with the restriction that these can only be suppliedby carbon-neutralmethane produced

via electrolysis and methanation with direct air capture. In agreement with the most

recent literature,40,48 this is preferred to the usage of such turbines with fossil fuels and

carbon capture and storage, which wedo not consider.We consider all of these technol-

ogies to be emissions free and do not explicitly model embedded or lifecycle emissions.

This assumption is uncertain for bioenergy in particular, which iswhywe include it among

the potentially problematic technologies. Existing capacities of such technologies are

considered to be kept in operation or repowered at the same sites and economically

paid off. The corresponding location-specific capacities for generation technologies

and for transmission lines are reported in Tables S3–S5, as well as openly available at

the online repository containing the model used in this study.

Furthermore, capacity expansion of existing plants or new installations are allowed

for those technologies, which are part of already planned projects, planned in the

most recent national energy strategy (SEN),49 or identified as pivotal in most recent

decarbonization studies.36 Those include four new technology types, namely

offshore wind, battery storage, electrolysis, and methanation with direct air capture,
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as listed in Table S6 with their respective fixed and variable costs and lifetime esti-

mates. Variable renewable and PHS reference costs are gathered from a country

study,50 while, for battery costs, we assume lithium-ion batteries and costs from

Schmidt et al.51 All such costs are nonetheless made subject to sensitivity based

on most recent literature cost ranges19,20,52,53 (Table S7). A specific, in depth litera-

ture analysis is dedicated to electrolysis and methanation with direct air capture

costs (Figure S14) and related sensitivity ranges32,54–60 (Table S7). Costs for trans-

mission lines depend on the type and length of connection. We use per-length costs

come from the real unitary costs declared by the transmission system operator for

existing or planned transmission capacity expansion projects for location-specific in-

ter-zone or international connections.24 Based on this, Table S6 reports specific

costs for the expansion of each transmission line.

The spatially explicit characterization of the generation potential for variable renew-

able generation consists of per-region capacity factor time series and per-region

maximum capacity limits. For the capacity factors, we rely on Pfenninger and

Staffell61,62 whose bias-corrected wind and PV simulations for all European NUTS2

regions are openly available through www.renewables.ninja. The spatial disaggre-

gation into the 20 Italian NUTS2 regions allows to clearly account for significantly

different renewable source availability profiles in each location (Figure S15), hence,

enabling a spatially explicit optimization of investments in additional capacity. An

exception is represented by offshore wind potentials, only available at NUTS1 reso-

lution and thus uniformly assigned to all coastal regions which have non-zero

offshore wind theoretical potentials. Finally, it is worth noting that all variable renew-

able generation potentials are significantly influenced by choice of weather year, as

shown in Figure S16. By running the model for each weather year and calculating

how the latter affects the minimum cost configuration, we select the year 2016 as

the most-typical reference weather year for Italy, while we identify 2010 and 1989

as the best and the worst cases, respectively, for sensitivity analysis purposes.

Maximum theoretical potentials for renewable capacity installation in each region are

derived from the open renewable potential datasets from Tröndle et al.,63 again for all

EU countries and with NUTS2 resolution, based on a GIS analysis of suitable installation

sites for rooftop PV, farm-scale (open-field) PV, onshore wind, and offshore wind. In

particular, the study distinguishes between ‘‘technical’’ and ‘‘technical-social’’ potentials,

with farmlands and protected areas excluded from the count in the second case. For this

study, we rely on themore conservative technical-social potentials, considering also that

the Italian legislation forbids renewable capacity deployment in protected areas. Overall

renewables potentials constrain the maximum installable electrolysis and, in turns,

methanation capacity in each location. Potentials for additional PHS capacity from

Terna;24 to which we apply a ratio of 100 kWh of PHS storage per kW of PHS power pro-

duction capacity (corresponding to theaverage ratio for the current PHSfleet). The result-

ing potentials, expressed asMWof additional capacity, are reported in Table S8. Finally,

maximum potentials for the capacity expansion of each individual international or inter-

zone transmission line are conservatively set, respectively, to +1 and +5GW, in line with

the current plans of Terna. Biomass potential is estimated as an additional system-wide 4

GW, and limited to biogas power plants, following the plans reported in the national en-

ergy strategy.49

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.joule.

2020.08.002.
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30. Rivier, M., Pérez-Arriaga, I.J., and Olmos, L.
(2013). Electricity transmission. In Regulation of
the Power Sector Power Systems and I, J.
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